(播放版)第14章线性动态电路的复频域分析.ppt
2023/8/31,1,第十四章 线性动态电路的复频域分析,主要内容重温拉普拉斯变换及其与电路分析有关的性质、拉普拉斯反变换的方法;KCL、KVL和VCR的运算形式;拉普拉斯变换在线性电路中的应用;网络函数的定义与含义;极点与零点对时域响应的影响;极点与零点与频率响应的关系。,2023/8/31,2,基本要求,掌握基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路;,掌握应用拉氏变换分析线性电路的方法和步骤;,理解网络函数的的定义和极点、零点的概念;,掌握网络函数的零点、极点与冲激响应的关系;,掌握网络函数的零点、极点与频率响应的关系。,在掌握了拉氏变换这一数学工具的基础上,2023/8/31,3,重点,KL的运算形式、运算阻抗和导纳、运算电路;应用拉氏变换分析线性电路的方法和步骤;网络函数的的定义和极点、零点的概念;网络函数的零极点与冲激响应的关系、与频率响应的关系。,难点,电路分析方法及定理在拉氏变换中的应用;零点、极点与冲激响应的关系;零点、极点与频率响应的关系。,2023/8/31,4,与其它章节的联系,拉氏变换:解决电路的动态分析问题。即解决第 7 章的问题,称之为运算法,是后续各章的基础,是前几章基于变换思想的延续。,网络函数部分以拉氏变换为基础,是叠加定理的一种表现。冲激响应参见第 7 章、频率响应参见第 11章。,2023/8/31,5,14-1 拉氏变换的定义14-2 拉氏变换的基本性质14-3 拉氏反变换的部分分式展开,复变函数与积分变换课程中学过的内容。,一些常用的变换,对数变换,温故而知新,A B=AB,lgA,乘法运算变换为加法运算,+lgB,=lgAB,相 量 法,正弦量 i1+i2=i,时域的正弦运算变换为复数运算,相 量,.I1,.I2,.I,=,+,2023/8/31,6,拉氏变换,拉氏变换法的核心是把 f(t)与 F(s)联系起来,把时域问题通过数学变换化为复频域问题。,F(s)(频域象函数),对应,f(t)(时域原函数),由于解代数方程比解微分方程较有规律且有效,所以拉氏变换在线性电路分析中得到广泛应用。,将电流和电压的初始值自动引入代数方程中,在变换处理过程中,初始条件成为变换的一部分。,把时间域的高阶微分方程变换为复频域的代数方程;,两个特点:,2023/8/31,7,1.典型函数的拉氏变换(应该记住),(1)单位阶跃函数 f(t)=e(t),e(t)=,s,1,(2)单位冲激函数f(t)=d(t),d(t)=1,(3)指数函数 f(t)=eat(a为实数),eat=,s-a,1,(4)正弦函数 f(t)=sin(t),(5)余弦函数 f(t)=cos(t),sin(t)=,s2+2,cos(t)=,s2+2,s,(6)斜坡函数 f(t)=t,t=,s2,1,常用的拉氏变换表见教材P350之表14-1。,2023/8/31,8,2.本章频繁使用的拉氏变换的基本性质,(1)线性性质,设:f1(t)=F1(s),,则:A1 f1(t)+A2 f2(t),(2)微分性质,若 f(t)=F(s),,该性质可将f(t)的微分方程化为F(s)的代数方程。,(3)积分性质,若 f(t)=F(s),,则,0-,t,f(t)dt,=,s,1,F(s),推论 f(n)(t),f2(t)=F2(s),=A1F1(s)+A2F2(s),则 f(t)=sF(s)-f(0-),=snF(s),-sn-1f(0-),-sn-2f(0-),-f(n-1)(0-),比例、叠加,2023/8/31,9,3.拉氏反变换,利用公式,f(t)=,2pj,1,c-j,c+j,F(s)est dt,若象函数是,或稍加变换后是表14-1中所具有的,公式涉及到以 s 为变量的复变函数的积分,比较复杂。工程上一般不采用这种方法。,部分分式展开法:把F(s)分解为简单项的组合,形式,可直接查表得原函数。,F(s)=F1(s)+F2(s)+,f(t)=f1(t)+f2(t)+,能运用自如。,反变换,2023/8/31,10,14-4 运算电路,运算法的思路:,显然,运算法与相量法的基本思想类似,因此,用相量法分析计算正弦稳态电路的那些方法和定理在形式上均可用于运算法。,用拉氏变换求解线性电路的方法称为运算法。,找(激励的、元件VCR的和KL的)象函数;,列复频域的代数方程;,得象函数和运算阻抗表示的运算电路图;,求电路变量的象函数形式;,通过拉氏反变换,得所求电路变量的时域形式。,2023/8/31,11,1.KL的运算形式,KCL:,i(t),u(t),i(t),=I(s),=,线性性质,KVL:,=u(t)=U(s)=0,2.VCR的运算形式,(1)电阻R,时域形式:u(t)=Ri(t),运算形式:U(s)=RI(s),运算电路,u(t)=R i(t),=0,2023/8/31,12,(2)电感L,时域形式 u(t)=L,取拉氏变换并应用线性和微分性质,dt,di(t),得运算形式:,sL称为L的运算阻抗,i(0-)为L的初始电流,或者写为:,I(s)=,sL,1,U(s),称为运算导纳,s,i(0-),元件用运算阻抗,初始值用附加电源,U(s)=sLI(s)-Li(0-),+,2023/8/31,13,(3)电容C,取拉氏变换并应用线性和积分性质,时域形式:,U(s)=,sC,1,I(s),s,u(0-),称为C的运算阻抗。,u(t)=,C,1,0-,t,i(t)dt+u(0-),得运算形式:,或者写为:,sC为称C的运算导纳。,u(0-)为C的初始电压。,sC,1,+,I(s)=sCU(s)-Cu(0-),运算电路,运算电路,2023/8/31,14,(4)耦合电感,U1(s),u1=L1,dt,di1,+M,dt,di2,u2=L2,dt,di2,+M,dt,di1,电压电流关系为,sM为互感运算阻抗。,取拉氏变换,由微分性质得耦合电感 VCR的运算形式。,=sL1I1(s),+sMI2(s),-L1i1(0-),-Mi2(0-),U2(s),=sL2I2(s),+sMI1(s),-L2i2(0-),-Mi1(0-),2023/8/31,15,(5)受控源的运算形式,时域形式,取拉氏变换,i1=,R,u1,i2=b i1,I1(s)=,R,U1(s),I2(s)=b I1(s),受控源的运算电路,2023/8/31,16,(6)运算电路模型,设:u(0-)=0,,i(0-)=0,时域方程,u=Ri+L,di,dt,+,1,C,0-,t,i dt,取拉氏变换,U(s)=RI(s)+sLI(s)+,sC,1,I(s),=(R+sL+,sC,1,运算电路,)I(s),=Z(s)I(s),Z(s)称为运算阻抗。,2023/8/31,17,U(s)=Z(s)I(s),I(s)=,Z(s),U(s),=Y(s)U(s),运算形式的欧姆定律,若 u(0-)0,,i(0-)0,运算电路,时域电路,2023/8/31,18,电容电压和电感电流初始值用附加电源表示。,注意,运算法可以直接求得全响应;,用 0-初始条件,跃变情况自动包含在响应中。,运算电路实际,电压、电流用象函数形式;,元件用运算阻抗或运算导纳表示;,2023/8/31,19,例 给出图示电路的运算电路模型。,解:开关打开前电路处于稳态,iL(0-)=5A,t=0 时开关打开,uC(0-)=25V,LiL(0-),2023/8/31,20,14-5 应用拉氏变换法分析线性电路,相量法由电阻电路推广而来,运算法也是。所以运算法的分析思路与相量法非常相似,推广时引入拉氏变换和运算阻抗的概念:i I(s),u U(s),R Z(s),G Y(s)。,用运算法分析动态电路的步骤:由换路前的电路求初始值 uC(0-),iL(0-);将激励变换成象函数;画运算电路(注意附加电源的大小和方向);用电阻电路的方法和定理求响应的象函数;反变换求原函数(得时域形式表达式)。,2023/8/31,21,例1 电路处于稳态。t=0时S闭合,求i1(t)。,解:求初值,I1(s),I2(s),iL(0-)=0,,求激励的象函数,UC(0-)=US=1V,US=1=1/s,画运算电路,求响应的象函数(用回路法),)I1(s),I2(s)=0,I1(s),(1+s+,s,1,s,1,-,s,1,(1+,s,1,)I2(s)=,s,1,-,+,I1(s)=I2(s)=,s(s2+2s+2),1,2023/8/31,22,反变换求原函数,i1(t)=-1 I1(s)=,(1+e-t cost-e-t sint)A,2,1,s(s2+2s+2)=0 有三个根:,0,-1+j,-1-j,I1(s)=,s,K1,+,s+1-j,K2,+,s+1+j,K3,K1=I1(s)s,s=0,=,2,1,K2=I1(s)(s+1-j),s=-1+j,=-,2(1+j),1,K3=I1(s)(s+1+j),s=-1-j,=-,2(1-j),1,将K1、K2、K3代入I1(s)求得:,2023/8/31,23,例2 稳态时闭合S。求 t0时的 uL(t)。,解:求初值,=1A,Un1(s),us2,R2,5,1,+,5,1,+,s,1,5,(s+2),2,+,5,s,5,-,s,1,2e2t=,s+2,2,5=,5,s,=,iL(0-)=,求激励的象函数,画运算电路,求响应的象函数(用结点法),2023/8/31,24,整理:,UL(s)=Un1(s),5s,2s+5,Un1(s)=,5(s+2),2,=,(s+2)(2s+5),2s,=,s+2,-4,+,2s+5,10,uL=-1 UL(s),=(-4e2t+5e2.5t)V,反变换求原函数,2023/8/31,25,例3 电路处于稳态时打开S。求i(t)和电感元件电压。,10=10/s,I(s)=,2+3+(0.3+0.1)s,s,10,+1.5,解:求初值,iL1(0-)=i(0-)=5A,iL2(0-)=0,求激励的象函数,画运算电路,求响应的象函数,2023/8/31,26,整理,s(0.4s+5),(1.5s+10),=,s,2,+,s+12.5,1.75,I(s)=,反变换求原函数,UL1(s)=0.3sI(s)-1.5,=-,s+12.5,6.56,-0.375,UL2(s)=0.1sI(s),=-,s+12.5,2.19,-0.375,uL1(t)=-6.56e-12.5t-0.375d(t)V,i(t)=I(s),=(2+1.75e-12.5t)A,uL2(t)=-2.19e-12.5t+0.375d(t)V,2023/8/31,27,i(0-)=iL1(0-)=5Ai(t)=(2+1.75e-12.5t)AuL1(t)=-6.56e-12.5t-0.375d(t)VuL2(t)=-2.19e-12.5t+0.375d(t)V,S打开瞬间,可见拉氏变换已自动把冲激函数计入在内。所以,当分析 iL(t)或 uC(t)有跃变情况的问题时,运算法不易出错。,uL1(t)、uL2(t)中将出现冲激电压。,讨论:,电流发生了跃变。,但 uL1(t)+uL2(t)无冲激,回路满足KVL。,i(0+)=3.75A,2023/8/31,28,加e(t)后再求导,也会产生错误结果。因为 e(t)的起始性把函数定义成 t0时为0。所以当电压或电流不为0时,一般不能在表达式中随意加e(t)。,本例在求出i(t)后,不要轻易采用对i(t)求导的方法计算uL1(t)和uL2(t),这会丢失冲激函数项:,提示,经典法有一定的局限性。,i(t)=(2+1.75e-12.5t)A,uL1=L1,dt,di,=-6.56e-12.5t V,2023/8/31,29,若要求用三要素法求解,则按磁链不变原则有:L1iL1(0-)+L2iL2(0-)=(L1+L2)i(0+),i(0+)=,L1+L2,L1iL1(0-)+L2iL2(0-),=,0.3+0.1,0.35+0,=3.75A,i()=,2+3,10,=2A,t=,2+3,0.3+0.1,=,12.5,1,s,代入三要素公式得:,i(t)=2+(3.75-2)e-12.5t,(t0+),=(2+1.75e-12.5t)A,2023/8/31,30,为表示t0-的情况,i(t)=5-5e(t)+(2+1.75e-12.5t)e(t)A,(t0-),此时:uL1(t)=L1,dt,di(t),=-6.56e-12.5t-0.375d(t)V,i(t)=2+(3.75-2)e-12.5t A,i(0-)=iL1(0-)=5A,2023/8/31,31,14-6 网络函数的定义,1.网络函数的定义 若电路在单一独立源激励下,其零状态响应r(t)的象函数为R(s),激励e(t)的象函数为E(s),则该电路的网络函数H(s)定义为R(s)与E(s)之比。,2.网络函数的类型,即 H(s),del,E(s),R(s),H(s)可以是驱动点阻抗、导纳;,根据激励E(s)与响应R(s)所在的端口:,电压转移函数、电流转移函数;,转移阻抗、转移导纳。,2023/8/31,32,注意,若激励 E(s)=1,即e(t)=d(t),则响应 R(s)=H(s)E(s)=H(s)。h(t)=-1H(s)=-1R(s)=r(t)说明网络函数的原函数为电路的单位冲激响应。或者说,如果已知电路某一处的单位冲激响应 h(t),就可通过拉氏变换得到该响应的网络函数网络函数仅与网络的结构和电路参数有关,与激励的函数形式无关。因此,如果已知某一响应的网络函数H(s),它在某一激励 E(s)下的响应 R(s)就可表示为R(s)=H(s)E(s),2023/8/31,33,P366例14-15 已知激励 is=d(t)求冲激响应 h(t)=uc(t),解:激励与响应属同一端口,H(s)=,E(s),R(s),=,Is(s),Uc(s),=Z(s),为驱动点阻抗。,Z(s)=,G+sC,1,=,C,1,s+,RC,1,1,h(t)=uc(t),=-1H(s),=,C,1,e(t),e,2023/8/31,34,P366 例14-16,已知低通滤波器的参数,当激励是电压u1(t)时,,求电压转移函数和驱动点导纳函数。,解:用回路电流法,)I1(s),I2(s),=U1(s),(sL1+,sC2,1,sC2,1,-,I1(s),=0,-,sC2,1,+,sC2,1,+R)I2(s),(sL3+,解方程得:,I1(s)=,D(s),L3C2s2+RC2s+1,U1(s),I2(s)=,D(s),1,U1(s),2023/8/31,35,式中:D(s)=L1L3C2 s3+RL1C2 s2+(L1+L2)s+R,代入数据:,D(s)=s3+2s2+2s+1,1.5H,0.5H,1W,电压转移函数为:,U2(s)=RI2(s)=I2(s),H1(s)=,U2(s),U1(s),=,D(s),1,=,s3+2s2+2s+1,1,驱动点导纳函数为:,H2(s)=,I1(s),U1(s),=,3(s3+2s2+2s+1),2s2+4s+3,2023/8/31,36,14-7 网络函数的极点和零点,由于H(s)定义为响应与激励之比,所以H(s)只与(网络)电路参数有关。在H(s)中不会包含激励的象函数。,对于由 R、L(M)、C和受控源组成的电路来说,H(s)是s的实系数有理函数,其分子、分母多项式的根或是实数或是(共轭)复数。,1.H(s)的一般形式,H(s)=,D(s),N(s),=,ansn+an-1sn-1+a0,bmsm+bm-1sm-1+b0,2023/8/31,37,写成,H(s)=,D(s),N(s),=H0,(s-p1)(s-p2)(s-pj)(s-pn),(s-z1)(s-z2)(s-zi)(s-zm),=H0,P,j=1,n,(s-pj),P,i=1,m,(s-zi),H0为常数,z1、z2、zm是N(s)=0的根,,当 s=zi 时,H(s)=0,称之为网络函数的零点;,p1、p2、pm是D(s)=0的根,,当 s=pi 时,H(s),称之为网络函数的极点。,2023/8/31,38,2.网络函数的零、极点分布图,在s平面上,H(s)的零点用“”表示,极点用“”表示。这样就可以得到网络函数的零、极点分布图。,的零、极点图。,s3+4s2+6s+3,2s2-12s+16,解:对分子作因式分解,2(s2-6s+8)=2(s-2)(s-4),对分母作因式分解,(s+1)(s2+3s+3),例:求H(s)=,=(s+1),2023/8/31,39,14-8 极点、零点与冲激响应,根据H(s)的定义可知,电路的零状态响应为:,D(s),N(s),Q(s),P(s),R(s)=H(s)E(s)=,H(s)、E(s)的分子和分母都是s的多项式,D(s)Q(s)=0 的根将包含D(s)=0 和Q(s)=0 的根。,Q(s)=0 的根与激励有关,属强制分量。,D(s)=0 的根只与网络(电路)参数有关,是自由分量。,根据冲激响应过程可知,h(t)中只有自由分量,,而h(t)=-1H(s)。,所以,分析H(s)的零、极点与冲激,响应的关系,就能预见时域响应的特点。,2023/8/31,40,设H(s)为真分式,且分母D(s)=0只有单根,则,冲激响应h(t)=-1H(s)=-1,i=1,n,s-pi,Ki,=,i=1,n,Ki e pi t,注意:极点位置不同,响应的性质不同,极点反映网络响应动态过程中自由分量的变化规律。,2023/8/31,41,归纳,当 pi 为负实根时,h(t)为衰减的指数函数,,稳定电路,不稳定电路,当 pi 为共轭复数时,h(t)为衰减或增长的正弦函数;,稳定电路,不稳定电路,当 pi 为正实根时,h(t)为增长的指数函数;,2023/8/31,42,注意,一个实际的线性电路是稳定电路,其网络函数的极点一定位于左半平面。根据极点分布情况和激励变化规律可以预见时域响应的全部特点。,当 pi 为虚根时,h(t)为纯正弦函数;,临界稳定,当 pi 为零时,h(t)为实数。,2023/8/31,43,P371 例14-18根据H(s)的极点分布情况分析uC(t)的变化规律。,解:US(s)为激励,UC(s)为响应,H(s)=UC(s)/US(s)为电压转移函数:,UC(s)=I(s),=,R+sL+,sC,1,US(s),sC,1,=,s2LC+sRC+1,US(s),H(s)=,LC,1,(s-p1)(s-p2),1,sC,1,式中p1、p2分别为:,2023/8/31,44,(1)当0,p1=-d+jwd,p2=-d-jwd,极点位于左半 s 平面。,uC(t)的自由分量为衰减的正弦振荡。,极点离虚轴越远,衰减越快。,极点离实轴远,振荡频率高。,(2)R=0,p1=jwd,p2=-jwd,极点位于虚轴,,自由分量为等幅振荡。,2023/8/31,45,p1、p2 是两个不等的负实根。,(3)R 2,极点位于负实轴上,uC(t)的自由分量为两个衰减,速度不同的指数项。,极点离原点越远,衰减越快。,uC(t)中的强制分量取决于激励。,以上根据H(s)的极点分布情况,定性地分析uC(t)的变化规律。,2023/8/31,46,14-9 极点、零点与频率响应,令网络函数H(s)中复频率 s=jw,分析H(jw)随w 变化的情况,就可预见相应的网络函数在正弦稳态情况下随 w 变化的特性,H(jw)是一个复数。,H(jw)=|H(jw)|,j(jw),|H(jw)|为网络函数在频率w处的模值,|H(jw)|随w,变化的关系为幅度频率响应,简称幅频特性;,j(jw)为相位频率响应,简称相频特性。,由于 H(jw)=H0,P,j=1,n,(jw-pj),P,i=1,m,(jw-zi),2023/8/31,47,所以幅频特性,具体分析方法(1)公式计算 若已知网络函数的零点、极点,则可以通过公式计算频率响应。,(2)作图法 定性描绘频率响应曲线。Bode图;几何求法。举例如下:,|H(jw)|=H0,相频特性,j(jw)=,S,i=1,m,arg(jw-zi),-,S,j=1,n,arg(jw-pi),=,ji-,qi,2023/8/31,48,例14-19 定性分析RC串联电路的频率特性,u2为输出。,解:(1)写频率特性表达式,H(jw)=,.U1(jw),.U2(jw),=,jw+,RC,1,RC,1,为电压转移函数。,幅频特性:|H(jw)|=,jw+,H0,RC,1,相频特性:,j(jw)=0-q(jw)=-arctg(wRC),(2)为绘制频率特性曲线,,需要求若干个点:,w=0:|H(j0)|=1,j(j0)=0;,w=wC=,RC,1,|H(jwC)|=,1,j(jwC)=-45o;,w:|H(j)|=0,j(j)=-90o。,2023/8/31,49,用几何求法再算几个点:,|H(jw)|=,H0,M1,M2,jw+,RC,1,j(jw)=-q(w)=-arctg(wRC),=,M(w),H0,作图求M(w)和q(w),w=w1:,|H(jw1)|=H0/M1,j(jw1)=-q1,w=w2:,|H(jw2)|=H0/M2,j(jw2)=-q2,w=w3:,|H(jw3)|=H0/M3,j(jw3)=-q3,幅频特性,2023/8/31,50,wC 称为截止频率。,或转折频率。该电路具有低通特性,通频带为wC-0=wC。,wC=,RC,1,采用几何求法,要按比例画图,然后量长度M(w)和测角度q(w)。此法虽不精确,但不用计算。,当需要较准的曲线时,应多求一些点。,2023/8/31,51,例14-20 RLC串联电路的电压转移函数H(s)=,解:引用P371 例14-18的结果,H(s)=,LC,1,(s-p1),(s-p2),1,试根据,其零、极点定性绘出H(jw)。,为分析频率特性,令s=jw得,H(jw)=,(jw-p1)(jw-p2),H0,式中无零点,极点为:,只讨论极点是一对共轭复数的情况。,2023/8/31,52,一对共轭复数极点为:p1=-d+jwd,p2=-d-jwd,幅频特性表达式:,相频特性表达式:j(jw)=-(q1+q2),|H(jw)|=,|jw-p1|jw-p2|,H0,=,M1(w)M2(w),H0,M1,M2,q2,q1,w=w1:,|H(jw1)|=,M1 M2,H0,j(jw1)=-(-q1+q2),w=w2,。用几何求法的作图过,d、wd、w0 与电路参数的关系同前。,程,与例14-19相同,不再重复。,2023/8/31,53,主导极点的概念*,对频率特性影响最大,或者说起主要作用的极点。,一对共轭复数极点靠近虚轴,且周围无零点,其它极点与虚轴的距离大于这对极点5倍以上。那么靠近虚轴的这对共轭复数极点对频率特性影响大。,|H(jw1)|=,M1 M2 M3M4,N1,|j(jw1)|=j1-(q1+q2+q3+q4),从图中看出,当w变化时,对M1、M2和q1、q2的影响较大,而影响最大的是M1和q1。,2023/8/31,54,极点的品质因数Qp*,当极点为一对共轭复数时,Qp,d,=,2,1,是RLC串联谐振回路的品质因数。,本例:,d=,2L,R,w0=,LC,1,即极点到坐标原点的距离与极点实部之比的一半。,代入上式得,Qp=,R,1,C,L,=Q,Qp(=Q)对频率特性的影响参见第十一章。,2023/8/31,55,本章结束,2023/8/31,56,例3 求S闭合时的 i1(t)和i2(t)。,解:根据运算电路列回路电流方程(R1+sL1)I1(s)-sMI2(s)=(1/s)-sMI1(s)+(R2+sL2)I2(s)=0代入数据(1+0.1s)I1(s)-0.05sI2(s)=(1/s)-0.05sI1(s)+(1+0.1s)I2(s)=0,取反变换,I1(s)=,s(7.5103s2+0.2s+1),0.1s+1,I2(s)=,s(7.5103s2+0.2s+1),0.05,i1(t)=(1-0.5e-6.67t-0.5e-20t)A,i2(t)=0.5(0.5e-6.67t-e-20t)A,解方程,2023/8/31,57,7-9 卷积积分,一、卷积的概念若已知函数 f1(t),f2(t),则积分,称为函数f1(t)与 f2(t)的卷积,记作:f1(t)*f2(t)。卷积符合交换律:f1(t)*f2(t)=f2(t)*f1(t)也符合分配律:f1(t)*f2(t)+f3(t)=f1(t)*f2(t)+f1(t)*f3(t),-,+,f1(x),f2(t-x),dx,2023/8/31,58,例:若 f1(t)=e(t),f2(t)=,求 f1(t)*f2(t)。解:按卷积的定义有,按 f2(t)*f1(t)也能得到上述结果。,0,t 0,e-t,t 0,f1(x)f2(t-x)0的区域为0,t,f1(t)*f2(t)=,0,t,1 e-(t-x)dx,=e-t,ex dx,=e-t(et-1),=1-e-t,f1(x)是单位阶跃函数,,且(t-x)0,即xt 时0,f2(t-x)=e-(t-x),2023/8/31,59,拉氏变换的象原函数只需在 t0 内有定义,因此,若f1(t)与 f2(t)都满足条件:当t0 时,f1(t)=f2(t)=0则,在电路分析中遇到的函数都满足上述条件,所以它们的卷积都按下式计算:,x 0,f1(x)=0,0,t-x t,f2(t-x)=0,0,=,2023/8/31,60,二、拉氏变换的卷积定理,设 f1(t)与 f2(t)的象函数分别为F1(s)和F2(s)则 f1(t)*f2(t)的拉氏变换一定存在,且 f1(t)*f2(t)=F1(s)F2(s)-1 F1(s)F2(s)=f1(t)*f2(t),在应用拉氏变换分析电路时,这一性质起十分重要的作用。可以利用它求网络响应:R(s)=E(s)H(s)r(t)=-1E(s)H(s)=,e(t)为任意激励的时间函数形式。,h(t-x)为网络的冲激响应。,2023/8/31,61,例14-7 已知激励 is(t)=2e-t mA求零状态响应 uC(t)。,解:根据P149表6-2可知电路的冲激响应为:,代入数据得:h(t)=106 e-2t uC(t)=-1IS(s)H(s)应用卷积定理求反变换,uC(t)=,210-6 e-x,106 e-2(t-x)dx,e-x,e-2t e 2x dx,ex dx,=2e-2t(et-1),=2(e-t-e-2t)e(t)V,h(t)=,C,1,e,=2e-2t,2023/8/31,62,利用卷积定理求拉氏反变换的例子,主要是这几步的变换。,若,求f(t)。,解:,f(t)=-1,=cost*cost,cosx cos(t-x)dx,cost+cos(2x-t)dx,(tcost+sint),F(s)=,(s2+1)2,s2,F(s)=,s2+1,s,s2+1,s,s2+1,s,s2+1,s,=,