欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    非线性电阻电路分析.ppt

    • 资源ID:5887739       资源大小:447KB        全文页数:45页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    非线性电阻电路分析.ppt

    第四章 非线性电阻电路,4.1 非线性电阻元件的特性 4.2 非线性电阻电路的方程 4.3 图解分析法 4.4 小信号分析法 4.5 分段线性分析法 4.6 数值分析法 4.7 应用实例:温度测量与控制电路,4.1 非线性电阻元件的特性,本章介绍非线性电阻电路方程的建立方法,分析非线性电阻电路的一些常用方法,如图解分析法、小信号分析法、分段线性化方法、数值分析法等。,一、非线性电阻元件,定义:在ui平面或iu平面上的伏安特性曲线不是通过原点的直线。,非线性电阻不满足欧姆定律,u=f(i)或 i=g(u),1.伏安关系,如:PN结二极管的伏安特性,从伏安特性可看出其u和i呈现单调关系,所以其伏安特性也可表示为:,二、非线性电阻按伏安特性关系的分类,1.单调型,其电压既可表示为电流的单值函数,电流也可表示为电压的单值函数,PN结二极管及其伏安特性曲线,充气二极管及其伏安特性曲线,隧道二极管及其伏安特性曲线,从充气二极管的伏安特性可见,u是i的单值函数,只能取电流i作为控制变量,为流控型非线性电阻。,从隧道二极管的伏安特性可见,i是u的单值函数,只能取电压u作为控制变量,为压控型非线性电阻。,2.流控型、压控型,其电压可表示为电流的单值函数或电流可表示为电压的单值函数,u=f(i),i=g(u),3.既非压控又非流控电阻,可看出方程既无法把u表达成i的单值函数,也无法把i表达成u的单值函数。,注意:与线性电阻不同,非线性电阻一般不是双向电阻。例如PN结二极管,就必须明确地用标记将其两个端钮区别开来,在使用时必须按标记正确接到电路中。,其电压电流关系不能表达为一个变量的单值函数,如:理想二极管,4.2非线性电阻电路的方程,从列写电路方程的两个基本依据来看:,2.不同的是元件本身的特性。由于非线性电阻元件的电压电流关系不是线性的,所以得到的方程将是非线性的。,1.基尔霍夫电流定律(KCL)、基尔霍夫电压定律(KVL)只与电路的结构有关,而与元件的性质无关。因此就列写KCL和KVL本身方程,非线性电阻电路与线性电阻电路无区别。,解:方法1:网孔法,消去i1、u3,可得,解:方法2:节点电压法,消去i3,可得,由上面的分析可知,建立非线性电阻电路方程时,非线性电阻的处理与受控电源的处理类似,只是非线性电阻的控制量是电阻本身所在支路上的变量(电压或电流)而已。,2.对电压控制型非线性电阻,采用节点法或割集法进行分析比较简单,因为用电压变量(节点电压或割集电压)容易表示电压控制型非线性电阻上的电流。,1.对电流控制型非线性电阻,采用网孔法或回路法进行分析比较简单,因为用电流变量(网孔电流或回路电流)容易表示电流控制型非线性电阻上的电压。,4.3图解分析法,图解分析法的原理,一、图解法的基本原理:将非线性电路拆分为两个一端口电路N1和N2,如图所示。拆分的方式可以是任意的,为了列写电路方程的方便,一般拆分成线性电路部分和非线性电路部分,也可以拆分成两个非线性电路部分。设N1和N2的电压电流关系为:,图解分析方法的思路:因为每个方程代表一条特性曲线,图解分析方法就是用作图的方法找到这些曲线的交点,即静态工作点(quiescent operating point)。,图解分析法的原理,根据KVL和KCL,有,或,由上两式,可得,a),b),用图解法在同一坐标系中画出式a)或式b)中两个方程的特性曲线,其交点为电路方程的解。,例4.3.1 如图4.3.2(a)所示,设非线性电阻R的电压电流关系为,其中u为非线性电阻两端的电压(单位为V)。试求非线性电阻R的静态工作点。,(a),解:将非线性电阻R左边的线性电路部分用戴维南电路等效,如图(b)所示,其中,(b),则线性电路部分的电压电流关系为:,非线性电路部分的电压电流关系为,在同一坐标系中作出两部分电路的伏安特性曲线,如图(c)所示,其交点为Q,即为非线性电阻R的静态工作点,对应的坐标为,(C),4.4 小信号分析法,上节图解法是在直流激励下,确定静态工作点,如果在此基础上再加入幅度很小的随时间变化的信号(小信号),如何处理呢?,小信号分析法的基本思路:是在静态工作点确定的基础上,将非线性电阻电路的方程线性化,得到相应的小信号等效电路或增量等效电路(线性电阻电路)。利用分析线性电路的方法进行分析计算。,4.4 小信号分析法,任意时刻t 都有,图示电路中,直流电压源为U0,电阻R0为线性电阻,非线性电阻R是电压控制型的,其伏安特性i=f(u),其伏安特性曲线如图4.4.1(b)所示,图4.4.1(a),图4.4.1(b),小信号时变电压为uS(t),1.首先按照KVL列出电路方程,分析方法:,(4.4.1),3.当uS(t)加入时,u1、i1是由于小信号uS(t)的作用而引起的偏差在,(4.4.2),(4.4.3),(4.4.4),在任何时刻t,u1、i1相对(UQ,IQ)都是很小的量。,的条件下,,由if(u)可得:,(4.4.5),又由于u1很小,可以将上式右边在UQ点附近用泰勒级数展开,取级数前面两项而略去一次项以上的高次项,上式可写为,(4.4.6),因此有,(4.4.8),Gd为非线性电阻在工作点(UQ,IQ)处的动态电导(dynamic conductance),Rd为相应的动态电阻(dynamic resistance)。,由于Gd 1/Rd在工作点(UQ,IQ)处是一个常量,所以从上式可以看出,小信号电压uS(t)产生的电压u1和电流i1之间的关系是线性的。,(4.4.11),由此可以作出给定非线性电阻在工作点(UQ,IQ)处的小信号等效电路,如图所示。,图4.4.2 小信号模型,例4.4.1 在如图4.4.3(a)所示非线性电阻电路中,非线性电阻的伏安特性为,现已知当uS(t)0时,回路中的电流i为1A。如果uS(t)costV时,试用小信号分析法求回路中的电流i。,解 由题意可知,此电路中的静态工作点在I0=1A处,工作点处的动态电阻为,作出小信号等效电路,故总电流为,可得:,4.5分段线性分析法,分段线性分析法(piecewise linearization analysis)是一种实用的近似方法,即用一条折线来分段逼近特性曲线,所以有时也称之为折线法(polygon method)。,思路:就是用若干段斜率不同的折线近似代替非线性电阻的实际特性曲线,从而将非线性电阻电路转化为几个线性电路求解,每个线性电路对应一个相应的区间。,4.5分段线性分析法,图所示为流控型非线性电阻的特性曲线,可以将非线性电阻的特性分作三段,分别用OA、AB、和BC三段直线来逼近它。直线方程如果用电流为自变量,其一般表达式为,图,分段线性逼近,其中Uk是第k段直线与u轴交点的坐标。显然,图中的U1=0,U20,U30。Rdk为动态电阻,等于第k段直线的斜率,即,图中三条线段上,有三个动态电阻,OA段是通过原点的直线,Rd1=RD10,由上式可知,第k段非线性电阻Rk的特性可以用电压源串联线性电阻来等效,如图(b)所示,称为分段戴维南电路。或电流源并联电导来等效如图(c)所示,称为分段诺顿电路。,或,例4.5.1 试用分段线性分析法求解图4.5.3(a)所示电路,其中非线性电阻的伏安特性曲线如图(b)所示。,(a),(b),图,解,现在按电压分为两段,分别用OA()、AB()两条直线分段逼近。取u为自变量,直线方程是,对OA段,可测得Ik=0A,Gdk=0.8S,,对AB段,可测得Ik=1.0A,Gdk=0.025S,显然,这是一个虚假解,应该舍弃。,此时正好在AB段的范围内,代入直线方程得到,注意:对每个线性电路计算后,要根据电压和电流的等效范围进行校验,仅当工作点在其有关段的等效范围时,其解才是正确的。否则便是虚假工作点,应予以舍弃。,4.6 数值分析法,数值分析法(numerical analysis)一般采用逼近的方法,使用迭代的点序列逐步逼近非线性方程的解。逼近的方法有牛顿法、共轭梯度法等。本节主要介绍牛顿法。,含有一个非线性电阻电路的方程,最终可归结为一个一元非线性方程,假设电路方程的形式为,牛顿法:是基于围绕某一近似解 对函数 进行泰勒展开给出的,即,如果 很小,则可取一阶近似,得到,这是一个线性方程,记其解为,则有,(4.6.3),(4.6.2),牛顿法的几何意义,图,f(x)=0的解x可解释为曲线y=f(x)与x轴的交点的横坐标,见图。设x(k)是x的某个近似值,过曲线y=f(x)上横坐标为x(k)的点Pk作切线,并将该切线与x轴的交点的横坐标x(k+1)作为x的新的近似值。注意到切线方程为,由于这种几何含义,牛顿法也称为切线法,(4.6.4),例4.6.1 用牛顿法求解图4.6.2所示电路的电压 和电流,其中iS=0.673A,二极管的电压电流关系为,解 由电路可得KCL方程,将 和 代入上式并整理,得到以为变量的非线性电路方程,图4.6.2,对f(u2)求导,得,将u2的数值代入 式,可得,因此,牛顿法的迭代公式为,其中上标表示迭代次数。取初始值u2=0时的迭代结果为,对于含有多个非线性电阻电路的方程,最终可归结为一个多元非线性方程组,将一元牛顿法进行推广,可以得到求解多元非线性方程组的牛顿迭代法。假设电路方程的形式为,(4.6.5),与求解一元非线性方程类似,设 是第k次迭代值,将式(4.6.5)在近似解处进行泰勒展开,并只取一阶近似,得到,式中 为待求的电路变量,一般为电压或电流。,这是一个线性方程组,写出矩阵形式有,(4.6.6),a),简写成,其中系数矩阵 称为雅可比矩阵(Jacobian matrix),为非线性方程组在 处的函数值向量。如果雅可比矩阵 是非奇异的,由式(4.6.7b)解出 得,上式可看成牛顿法的迭代公式(4.6.2)的直接推广。,(4.6.8),b),例4.6.2 用牛顿法求解图4.6.3所示电路各支路电流。电路中各非线性电阻的电压电流关系分别为,,图4.6.3,解:列节点、的KCL方程得,代入非线性电阻的电压电流关系,得到,将上式代入前面两式中,得到,列出回路l1的KVL方程得,由上式得到关于u1,u3的非线性电路方程组,得到雅可比矩阵为,由式(4.6.8)得到迭代公式为,对非线性方程组,可能会出现许多组解的情况,必须取不同的初始值进行迭代试运算。通过不同初始值的迭代运算,得到两组结果,和,经过验算,它们都是电路方程的解。,由第二组解,得到u2=u1u3=0.2641V,从而各支路电流为,由第一组解,得到u2=u1u3=2V,从而各支路电流为,4.7 应用实例:温度测量与控制电路,图4.7.1 温度测量与控制电路,例 对图所示电路,设计电阻RL、RH,使温度稳定在85100。,解 如图所示,注意到理想运算放大器的“虚断”特性(同相输入端电流为零),N1的同相端输入电压为,应用叠加定理,同时注意到理想运算放大器的“虚断”特性(反相输入端电流为零),可求出N1的反相端电压ut,由理想运算放大器的“虚短”特性,得到 于是得到,将电阻Rt的电阻值随温度T()变化的关系代入上式,得出u1随温度T变化的关系式为,当T=85时,算得,该电压值应该等于电压下限值uREFL,于是有,得出,当T=100时,算得,该电压值应该等于电压上限值uREFH,,得出,于是有,

    注意事项

    本文(非线性电阻电路分析.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开