欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    解三角形的实际应用举例.ppt

    • 资源ID:5838037       资源大小:606KB        全文页数:21页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    解三角形的实际应用举例.ppt

    解三角形的实际应用举例,引例1:(课本p.70.题2)飞机的飞行线路和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m,速度为180km/h,飞行员先看到山顶的俯角为300,经过960s(秒)后又看到山顶的俯角为450,求山顶的海拔高度(精确到1m).,引例2:我军有A、B两个小岛相距10海里,敌军在C岛,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,为提高炮弹命中率,须计算B岛和C岛间的距离,请你算算看。,A,C,B,解斜三角形的主要理论依据是什么?,正弦定理,余弦定理,(1)已知两角和一边,求其它元素;,已知三边,求三个角;,(2)已知两边和一边对角,求其它元素。,(2)已知两边和它们的夹角,求其它元素。,例1、自动卸货汽车的车箱采用液压机构.设计时需要计算油泵顶杆BC的长度(如图所示).已知车箱最大仰角为60油泵顶点B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC为1.40m,计算BC的长.,抽象数学模型,解:由余弦定理,得,BC2=,=3.571,BC1.89(m),答:顶杆BC约长1.89m,AB2+AC2-2ABACcosA,解斜三角形理论应用于实际问题应注意:,1、认真分析题意,弄清已知元素和未知元素。,2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。,3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。,练1.如图,一艘船以32海里/时的速度向正北航行,在A处看灯塔S在船的北偏东200,30分钟后航行到B处,在B处看灯塔S在船的北偏东650方向上,求灯塔S和B处的距离.(保留到0.1),解:AB=16,由正弦定理知:可求得BS7.7海里。,练2、我舰在敌岛A南50西相距12海里B处,发现敌舰正由岛A沿北10西的方向以10海里/时的速度航行,我舰要用2小时追上敌舰,则需要的速度大小为。,南,B,例2.如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别是 450和 600,、间的距离是12m.已知测角仪器高1.5m.求烟囱的高。,B,A,A1,C1,D1,例2 曲柄连杆机构当曲柄CB绕C点旋转时,通过连杆AB的传递,活塞作往复直线运动。当曲柄在CB0时,曲柄和连杆成一条直线,连杆的端点A在A0处。设连杆AB长为340mm,曲柄CB长为85mm,曲柄自CB0按顺时针方向旋转80度,求活塞移动的距离。,联几何画板课件,思考题:,C,为了开凿隧道,要测量隧道口D,E间的距离,请你设计一种合理的方案。,1、解决实际应用问题的关键思想方法是什么?,2、解决实际应用问题的步骤是什么?,实际问题,数学问题(画出图形),解三角形问题,数学结论,分析转化,检验,小结:,答:把实际问题转化为数学问题,即数学建模思想。,谢谢,再见!,我国古代很早就有测量方面的知识,公元一世纪的周髀算经里,已有关于平面测量的记载,公元三世纪,我国数学家刘徽在计算圆内接正六边形、正十二边形的边长时,就已经取得了某些特殊角的正弦,解三角形的方法在度量工件、测量距离和高度及工程建筑等生产实际中,有广泛的应用,在物理学中,有关向量的计算也要用到解三角形的方法。,解三角形问题是三角学的基本问题之一。什么是三角学?三角学来自希腊文“三角形”和“测量”。最初的理解是解三角形的计算,后来,三角学才被看作包括三角函数和解三角形两部分内容的一门数学分学科。,

    注意事项

    本文(解三角形的实际应用举例.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开