欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    组合数学 3.3常系数线性非齐次递推关系.ppt

    • 资源ID:5811690       资源大小:204.99KB        全文页数:18页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    组合数学 3.3常系数线性非齐次递推关系.ppt

    3.3常系数线性非其次递推关系,3.3.1 非其次递推关系 3.3.2 举例,3.3.1 非其次递推关系,常系数线性非其次递推关系 anc1an-1c2an-2ckan-k F(n)()其中c1,c2,ck是实数常数,ck0;F(n)是只依赖于n且不恒为0的函数。相伴的齐次递推关系 anc1an-1c2an-2ckan-k(),3.3.1 非其次递推关系,定理 若anx(n)为递推关系(3.3.1)相伴的齐次递推关系()的通解,any(n)为递推关系()的一个特解,则anx(n)y(n)为递推关系()的通解。,3.3.1 非其次递推关系,定理 设常系数线性非齐次递推关 anc1an-1c2an-2ckan-k F(n)其中c1,c2,ck是实数常数,ck0;且F(n)(btntbt-1nt-1b1n b0)Sn 其中b1,b2,bt和S是实数常数。当S是相伴的线性齐次递推关系的特征方程的m(m0)重根时,存在一个下述形式的特解:annm(ptntpt-1nt-1p1np0)Sn 其中p1,p2,pt为待定系数。,3.3.2 举例,例 解递归解(1)相伴齐次递推关系anan-1()()的特征方程x10()的特征根 x1()的通解ana1na(a为任意常数),3.3.2 举例,(2)由于F(n)nn1n且s1是()的1重 根,所以得()的一个特解形如 ann1(p1np0)1n(p1,p0为待定系数)代入a11,a23得,3.3.2 举例,故得()的一个特解 ann1(n)1n n2 n(3)()的通解 ana n2 n(a为任意常数)代入a11得a0(4)求得递归的解an n2 n,3.3.2 举例,例3.3.2 解Hanoi问题的递归,即解(1)相伴齐次递推关系an2an-1()()的特征方程x20()的特征根 x2()的通解ana2n(a为任意常数),3.3.2 举例,(2)由于F(n)111n且s1是()的0重 根,所以得()的一个特解形如 ann0p1n p(p为待定系数)代入()得p1 故得()的一个特解an1,3.3.2 举例,(3)()的通解 ana2n1(a为任意常数)代入a11得a1(4)求得递归的解an2n1,3.3.2 举例,定理若anx(n)和any(n)分别是递推关系 anc1an-1c2an-2ckan-kF1(n)anc1an-1c2an-2ckan-kF2(n)的解,其中c1,c2,ck(ck0)是实数常数,F1(n)与F1(n)是只依赖于n且不恒为0的函数,则anx(n)y(n)为递推关系 anc1an-1c2an-2ckan-kF1(n)F2(n)的解,3.3.2 举例,例 解递归解(1)相伴齐次递推关系an3an-1()()的特征方程x30()的特征根 x3()的通解ana3n(a为任意常数),3.3.2 举例,(2)分别求an3an-132n()an3an-14n()的一个特解()的一个特解形如b2n(b为常数)将其代入()得b6 故求得()的一个特解an62n类似求得()的一个特解an2n3故求得()的一个特解an 62n2n3,3.3.2 举例,(3)()的通解 ana3n62n2n3(a为任意常数)(4)代入a18得a5。故求得递归的解 an53n62n2n3,

    注意事项

    本文(组合数学 3.3常系数线性非齐次递推关系.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开