欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    确定二次函数的表达式(经典).ppt

    • 资源ID:5806964       资源大小:696.50KB        全文页数:18页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    确定二次函数的表达式(经典).ppt

    二次函数,确定二次函数的表达式,复习提问:,1.二次函数表达式的一般形式是什么?,二次函数表达式的顶点式是什么?,3.若二次函数y=ax+bx+c(a0)与x轴两交点为(x1,0),(x2,0)则其函数表达式可以表示成什么形式?,y=ax+bx+c(a,b,c为常数,a 0),y=a(x-h)2+k(a 0),y=a(x-x1)(x-x2)(a 0),一、教学目标:,1.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.2.会利用待定系数法求二次函数的表达式.3.灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程。二、重点和难点:根据问题灵活选用二次函数表达式的不同形式,既是重点又是难点。,例1.若二次函数图象过A(2,-4),B(0,2),C(-1,2)三点 求此函数的解析式。,例2.已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式。,解法2:(利用顶点式)当x=3时,有最大值4 顶点坐标为(3,4)设二次函数解析式为:y=a(x-3)2+4 函数图象过点(4,-3)a(4-3)2+4=-3 a=-7二次函数的解析式为:y=-7(x-3)2+4,例3.二次函数y=ax2+bx+c的图象过点A(0,5),B(5,0)两点,它的对称轴为直线x=3,求这个二次函数的解析式。,小结:已知顶点坐标(h,k)或对称轴方程x=h 时优先选用顶点式。,解:(交点式)二次函数图象经过点(3,0),(-1,0)设二次函数表达式为:y=a(x-3)(x+1)函数图象过点(1,4)4=a(1-3)(1+1)得 a=-1 函数的表达式为:y=-(x+1)(x-3)=-x2+2x+3,例已知二次函数图象经过点(1,4),(-1,0)和(3,0)三点,求二次函数的表达式。,其它解法:(一般式)设二次函数解析式为y=ax2+bx+c 二次函数图象过点(1,4),(-1,0)和(3,0)a+b+c=4 a-b+c=0 9a+3b+c=0 解得:a=-1 b=2 c=3 函数的解析式为:y=-x2+2x+3,(顶点式)解:抛物线与x轴相交两点(-1,0)和(3,0),(-1+3)/2=1 点(1,4)为抛物线的顶点 可设二次函数解析式为:y=a(x-1)2+4 抛物线过点(-1,0)0=a(-1-1)2+4 得 a=-1 函数的解析式为:y=-(x-1)2+4,做一做 如图,某建筑的屋顶设计成横截面为抛物线(曲 线AOB)的薄壳屋顶它的拱宽AB为6m,拱高CO为 0.9m 试建立适当的直角坐标系,并写出这段抛物线所对应的二 次函数表达式?,解:以线段AB的中垂线为y轴,以过点o且与y轴垂直的直线为x轴,建立直角坐标系,设它的函数表达式为:y=ax(a0),谈谈你的收获,议一议 通过上述问题的解决,您能体会到求二次函数表达式采用的一般方法是什么?,(待定系数法),你能否总结出上述解题的一般步骤?,1.若无坐标系,首先应建立适当的直角坐标系;2.设抛物线的表达式;3.写出相关点的坐标;4.列方程(或方程组);5.解方程或方程组,求待定系数;6.写出函数的表达式;,归纳:在确定二次函数的表达式时(1)若已知图像上三个非特殊点,常设一般式;(2)若已知二次函数顶点坐标或对称轴,常设顶点式 较为简便;(3)若已知二次函数与x轴的两个交点,常设交点式较为简单。,谢谢!,再见!,作业题!,

    注意事项

    本文(确定二次函数的表达式(经典).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开