直角三角形的三边关系.ppt
第14章勾股定理,1.直角三角形三边的关系,概 括,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有a2b2c2。,勾股定理揭示了直角三角形三边之间的关系,勾股定理:,a,b,c,直角三角形两直角边的平方和等于斜边的平方,a2+b2=c2,a,c,b,直角三角形两直角边的平方和等于斜边的平方.,做一做:,P,625,400,2,6,x,P的面积=_,X=_,225,B,A,C,AB=_,AC=_,BC=_,25,15,20,求下列图中表示边的未知数x、y、z的值.,81,144,x,y,z,做一做,X=81+144,2,Y=169-144,Z=625-576,2,2,X=15,Y=5,Z=7,结论:,S1+S2+S3+S4,=S5+S6,=S7,比一比看看谁算得快!,3.求下列直角三角形中未知边的长:,可用勾股定理建立方程.,方法小结:,8,x,17,16,20,x,12,5,x,做一做,例1如图,将长为5.41米的梯子AC斜靠在墙上,长为2.16米,求梯子上端A到墙的底边的垂直距离(精确到0.01米),在Rt中,.米,.米,根据勾股定理可得.(米)答:梯子上端A到墙的底边的垂直距离 约为4.96米,5.14,2.16,?,解,拓展,A,C,O,B,D,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?,1.在Rt中,c,a,ACb,B90(1)已知a6,b10,求c;(2)已知a24,c25,求b,3.小波家买了一部新彩电,小波量了电视机的屏幕后,发现屏幕长58厘米和宽46厘米,就问妈妈彩电是多少英寸,妈妈告诉他:“我们平常所说的电视机多少英寸指的是屏幕对角线的长度,1英寸等于2.54厘米,利用你所学的知识算一下电视机是多少英寸的?”,练习,2.如果一个直角三角形的两条边长分别是3厘米和4厘米,那么这个三角形的周长是多少厘米?,试一试,用四个完全相同的直角三角形,然后将它们拼成如图所示的图形,大正方形的面积可以表示为。,又可以表示为,对比两种表示方法,看看能不能得到勾股定理的结论,(a+b)2,试一试,用四个完全相同的直角三角形,还可以拼成如图所示的图形,大正方形的面积可以表示为。,又可以表示为,对比两种表示方法,看看能不能得到勾股定理的结论,=,读一读 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.,弦,股,勾,图1-1,总统证法,如图,为了求出位于湖两岸的两点A、B之间的距离,一个观测者在点C设桩,使三角形恰好为直角三角形通过测量,得到AC长160米,长128米问从点A穿过湖到点B有多远?,如图,在直角三角形中,AC米,米,根据勾股定理可得 96(米)答:从点A穿过湖到点B有96米,解,例,例1 如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB(精确到0.01米),解:,如图14.1.4,在RtABC中,,BC=2.16米,AC=5.41米,,根据勾股定理可得,答:梯子上端A到墙的底边的垂直距离AB约为4.96米.,如图,大风将一根木制旗杆吹裂,随时都可能倒下,十分危急。接警后“119”迅速赶到现场,并决定从断裂处将旗杆折断。现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?,9m,24m,1、如图,受台风麦莎影响,一棵树在离地面4米处断裂,树的顶部落在离树跟底部3米处,这棵树折断前有多高?,应用知识回归生活,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?,x2+52=(x+1)2,x=12,水池,自学检测三:,1.如图,小方格都是边长为1的正方形,求四边形D的面积与周长,练习,2.假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?,