欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    牟合方盖与球的体积(高一).ppt

    • 资源ID:5784298       资源大小:2.40MB        全文页数:12页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    牟合方盖与球的体积(高一).ppt

    牟合方盖与球的体积,先看一个中学数学中的三视图练习题:,我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是(),利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B,B,下面介绍与“牟合方盖”相关的知识动画演示,“牟合方盖”是刘徽研究球积公式时创建的几何模型,这一模型的建立,为最后获得球积公式提供了充分条件。,祖暅在刘徽研究牟合方盖的基础上,继续新的探索,最终建立了球积公式。他们的共同研究成果,我们称之为“刘 祖原理”。,所谓“牟合方盖”,是以棱长为一寸的立方体八枚,合之则棱长为二寸的立方体。,又以过立方体中之二正圆柱垂直相贯并内切于立方体之相应侧面。,则二内切于立方体的两垂直贯的正圆柱的共同部分,就叫“牟合方盖”。这是由于这个立体的外形似两把上下对称的正方形雨伞。,在这个立体里面,可以内切一个半径和原来圆柱体一样大小的球体。,祖暅沿用了刘徽的思想,利用刘徽“牟合方盖”的理论去进行体积计算,他的方法是将原来的“牟合方盖”平均分为八份,取它的八分之一来研究。,小牟合方盖体积=2r/3 牟合方盖体积=16r/3故:球体体积=(/4)(16r/3)=4r/3,设OP=h,过 P 点作平面 PQRS 平行于 OABC。又设内切球体的半径为 r,则 OS=OQ=r,由勾股定理,不难证明等高处阴影部分的面积总相等。所以,有理由相信,虽然方锥跟小正立方体去掉小“牟合方盖”后的形状不同,但因它们的体积都可以用截面面积和高度来计算,而在等高处的截面面积总是相等的,所以它们的体积也就不能不是相等的了。于是他提出了著名的原理:“缘幂势既同,则积不容异。”再根据刘徽的想法,可求出球体体积公式。,牟合方盖的三视图:,三视图中三个等圆的是球,两方一圆的是圆柱,两圆一方是牟合方盖,谢谢观赏,

    注意事项

    本文(牟合方盖与球的体积(高一).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开