欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    《分数的乘法》教学设计.docx

    • 资源ID:5770320       资源大小:158.36KB        全文页数:84页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《分数的乘法》教学设计.docx

    单元目标:1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。4、使学生理解倒数的意义,掌握求倒数的方法。单元重点:分数乘法的意义和计算法则。单元难点:1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。2、分数乘法计算法则的推导。1、分数乘法(1)分数乘整数教学目标:1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:一、复习1.出示复习题。(1)列式并说出算式中的被乘数、乘数各表示什么?5个12是多少?9个11是多少?8个6是多少?(2)计算:+=+=2.引出课题。+这题我们还可以怎么计算?今天我们就来学习分数乘法。分页代码二、新投1、利用+教学分数乘法。(1)这道加法算式中,加数各是多少?(都是)(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,×3)(3)÷÷=9,那么+=X3,所以X3=90同学们想想看,X3=9计算过程是怎样的?谁能把它补充完整。2、出示例1,画出线段图,学生独立列式解答。(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。4、练习:练习完成“做一做”第2题。5、教学例2(1)出示X6,学生独立计算。(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)2、“做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)三、作业练习二第1、2、4题。【教材分析】苏教版课程标准教材编写的长方体和正方体的认识以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。【教学片段】师:刚才,同学们动脑筋有条理地数出了长方体有生(齐):6个面,12条棱,8个顶点。师:我们的研究不能满足于“是什么”,还要探究“为什么”。(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6X4=24条棱,可为什么只有12条棱呢?(学生仔细打量眼前的长方体模型,积极探索着答案。)生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。师:那应该怎样算呢?生(齐):6X4÷2=12条棱。师:你现在也能提一些“为什么”的问题吗?生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?师:问得好!你有答案吗?生1:我有答案,但想让其他同学回答。生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6X4÷3=8个顶点。师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?生1:能不能由棱的条数推算出顶点的个数、面的个数?生2:由顶点的个数是不是也能推算出面的个数和棱的条数?师:真会提问题!同学们有兴趣研究吗?(学生兴致勃勃地研究并汇报了两个问题。)师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?生1:都先算出了24。这是为什么?(学生陷入了沉思,不一会儿,陆续举起手。)生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么"。师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。师:反过来呢?生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。分页代码师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。【教学反思】一、数学学习是经验的,也是推理的新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。二、空间观念是具象的,也是关系的一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素一一面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。三、课堂思考是个体的,也是群体的学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。教学内容:课本第48-51页的内容及例1,完成“做一做”题和练习十二的第515题。教学目的:使学生理解比的基本性质,掌握化简比的方法。教学重、难点:化简比的方法。教学过程:一、复习。1.除法中的商不变规律是什么?分数的基本性质是什么?2、比与除法、分数有什么关系?3、求比值5:154/5:8/150.8:0.12二、新授。1、教学比的基本性质。我们刚才复习了除法中商不变规律和分数的基本性质,又知道和除法、分数有着密切的联系,比的前项相当于被除数,比的项相当于除数;比的前项也相当于分数的分子,比的后项相当分母。那么在比中有什么样的规律?让学生自己讨论初步说出结论比的前项和后项同时乘以或者同时除以相同的数(零除外)比值不变。这就是比的基本性质。也可以阅读书上内容说出答案。注意:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)2.教学化简比。利用比的基本性质,我们可以把比化成最简单的整数比。出示例1:把下面各比化成最简单的整数比。(1)14:21(2)1/6:2/9(3)1.25:2(1)问:这道题的前项和后项都是什么数?怎样才能使它化成最简的整数比呢?(先让学生自己讨论解答,然后引导得出:要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)(2)问:这是一道分数比,怎样才能使它转化成整数比?(让学生自己动手做,后对照课本上的例题做法,对或者错,共同完成后引导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比)化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。(3)问:这道是小数比,怎样化成整数比?(让学生说说并自己解答。指导根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比)(4)还有其它解法吗?可根据学生所答具体分析,特别是分数比实际上可用是分数除法来计算化简。小结:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?特别提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)三、巩固练习。1 .完成“做一做”的题目。让学生说一说化简比的方法。2 .练习十二第5、7、8题。3 .练习十二第9题。四、作业。练习十二第6、10题【教学内容】北师大版小学数学六年级(上册)第四单元第5153页“化简比”。【教学目标】D在实际情境中,体会化简比的必要性,进一步体会比的意义。2)会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。【教学重点】会运用商不变的性质或分数的基本性质化简比。【教学难点】能解决一些简单的实际问题。【教具准备】蜂蜜、水、量筒、水杯和自制课件【教学设计】教学过程教学过程说明一.制蜂蜜水的活动:哪一杯更甜?同学们分成小组进行实验活动:各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水。各小组选出代表在全班进行汇报、交流。议一议哪个小组调制蜂蜜水更甜。课件出示课本P51图片,同时配上画外音:一个男同学说:我调制的一杯蜂蜜水用了40毫升蜂蜜、360毫升水。一个女同学说:我调制的一杯蜂蜜水用了10亳升蜂蜜、90毫升水。师:他们俩调制的蜂蜜水哪一杯更甜?请估一估,再试一试。我们先分别写出它们的比。40:36010:90就这样直接比较他们俩谁调制的蜂蜜水更甜还是有困难,用什么办法来解决呢?请分组讨论一下。40:360=1:910:90=1:9得出结论:两杯水一样甜。二.化简比。分数可以约分,比也可以化简。0.7:0.8:师:刚才我们根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。现在请同学们先自己尝试一下化简小数与小数的比和分数与分数的比,然后请同学说一说是根据什么来化简的。0.7:0.8:=0.7÷0.8=÷=7÷8=×4=7:8=8:5完成书上“试一试”化简下面各比。15:210.12:0.4:1:请学生独立完成后,说说化简比的方法,全班集体订正。三.课堂练习。课件出示课本P52第1题:连一连在学生中开展比赛,鼓励学生独立完成。课件出示课本P52第2题:写出各杯子中糖与水的质量比。1)写出四个杯子中糖和水的质量比。2)这几杯糖水有一样甜的吗?3)还能写出糖与糖水的质量比吗?课件出示课本P52第3题:(1)(2)题自己独立完成;(3)题投球命中率同学讨论完成。四、总结师:同学们一起来总结本节课学习的内容:阅读数学课本P51比的化简。我们是根据什么来化简比的呢?是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简的。我们在实际生活中什么时候需要化简比?或者说我们用化简比可以解决实际生活中的哪些问题五、独立完成课本P53第4题和第5题。让学生进行实际操作,动手调制蜂蜜水。通过“调制蜂蜜水”的活动,让学生在解决“哪一杯更甜”这个问题的过程中,加深对“比”的意义的理解,进一步感受比、除法、分数之间的关系。体会化简比的必要性,学会化简比的方法。根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简整数与整数的比。这是小数与小数的比和分数与分数的比,还是根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简,目的是让学生在不同题目中巩固化简比的方法。进一步巩固化简比的方法。巩固化简比“这几杯糖水有一样甜的吗?”这个问题需要化简比或求出比值后才能确投球命中率的高低,其实就是比值大小的比较。因此,教师可以引导学生在完成(1),(2)两题的基础上,在小组内讨论完成(3)题,然后在班级交流每组的情况,从而让学生明白判断投球命中率的高低要看比值的大小。【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第36页”图案设计"O【教学目标】1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。3、结合欣赏和设计美丽的图案,感受图形世界的神奇。【教学重、难点】1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。【教具、学具准备】1、三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。【个性化修改】【教学设计】教学过程教学过程说明一、创设情境1、 欣赏生活中美丽的图案:2、你看到的这些生活中的美丽图案,你有何感想?3、 揭示课题:今天,我们来制作美丽的图案。二、观察、分析图案:1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?2、 小组内进行交流.3、 小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)4、 你还有其他方法吗?5、6、 教师小结:其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。三、设计图案。1、独立完成书37页练一练1题、2题。7、 小组合作设计图案。(组长汇报交流的结果。)(1)作品展示:把学生画的图案全部张贴在教室的四周,全体学生下座位参观作品。(2)学生评价:选对你印象最深的作品进行评价,比一比看谁评价得好。五、课堂小结:1、 同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?2、 教师激励学生,提出希望。通过欣赏生活中美丽图案,激起学生对美丽图案的探究欲望,唤起学生制作图案的兴趣。通过再次欣赏花瓣图案,观察分析图案的构成,使学生进一步了解一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,体会图案设计的基本过程。通过小组合作探究、自由讨论,鼓励学生采用不同方法交流。注重培养学生想象和操作相结合,分析图形之间的关系。培养学生研究空间图形的能力、初步的空间观念,体验活动成功的喜悦。通过学生的作品展示,使每个学生都能够体验到成功的快乐;同时,让学生对别人作品多种形式的进行评价,在交流和教师的总结中,提高了自己的审美能力,通过课堂小结,让学生感受到学习数学知识的愉悦,知道自己本节课学习了那些知识,还有什么不足,今后应该注意的问题。六、板书设计:【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第38页“数学欣赏”。【教学目标】1、通过选择生活中有趣而美丽的图案,供学生欣赏,培养学生的审美意识、认识数学的美、体会图形世界的神奇。2、引导学生尝试绘制美丽的图案等操作活动,使学生获得研究图形的经验。体验学习数学的乐趣,激发学生学习数学的兴趣【教学重、难点】1、欣赏生活中美丽的图案,培养审美意识;2、绘制美丽图案的方法。【教具、学具准备】1、三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。2、课件1:生活中美丽图案的视频(课前拍摄我们身边的美丽图案)。课件2:课本上美丽图案制作的动画演示。【个性化修改】【教学设计】教学过程教学过程说明一、创设情境1、欣赏生活中美丽的图案:播放视频或(图案图片)一一(包装盒上的图案、门上的图案、建筑物上的造型图案、商标图案、等)2、你看到的这些生活中的美丽图案,你想说什么?4、在你的周围你还见到了哪些有趣的图案?5、揭示课题:今天,我们来欣赏和制作美丽的图案。二、欣赏美丽的图案:1、课件展示教材中的图案(也可以选择一些其他的图案)。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?7、小组内进行交流.8、小组代表汇报研究结果。(汇报你发现的这些图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)9、多媒体动画演示图案形成的过程.10、教师小结。其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。三、绘制美丽的图案。1、小组内讨论下面美丽图案是由哪个基本的图形通过怎样的变换而来的?绘制的步骤应该是什么?要绘制的图案:2、组长汇报交流的结果。3、多媒体再次演示绘制的步骤,并阅读课本上绘制的方法;绘制的步骤:6、讨论绘制时应该注意的问题。7、操作活动:开始绘制图案活动,播放轻松音乐,教师巡回参与指导。四、作品展示和评价1、作品展示:把学生画的图案全部张贴在教室的四周,全体学生下座位参观作品。2、学生评价:、选对你印象最深的作品进行评价(可以是画得好的,也可以是画得不好的)。比一比看谁评价得好。、教师系统评价:A、学生表现B、作品优点、缺点C、需要改进的地方D、提出希望五、课堂小结:3、同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?4、教师激励学生,提出希望。通过观看影片中的美丽图案,激起学生对美丽图案的探究欲望,唤起学生审美意识。通过再次欣赏课本上的美丽图案,观察图案的构成,使学生认识数学的美、体会图形世界的神奇,再次激发他们的探究欲望。通过小组合作探究、自由讨论,以及各种操作活动,培养学生利用所学知识解决实际问题的能力,开发学生智力。体验合作、探究学习的乐趣,真实感受图形特征,培养学生动手能力、合作能力、研究空间图形的能力、初步的空间观念,体验活动成功的喜悦。通过每位学生的作品展示,使每个学生都有展示自己的机会,使每个学生都能够体验到成功的快乐;同时,让学生对别人作品多种形式的进行评价,锻炼了学生的口语表达能力,让学生在交流和教师的总结性的评价中,提高了自己的审美的能力,使全体学生不同程度的提高和进步。通过课堂小结,让学生感受到学习数学知识的愉悦,知道自己本节课学习了那些知识,还有什么不足,今后应该注意的问题。六、课外拓展:观察生活中还有哪些美丽的图案?请从中选出一个你感兴趣的画下来。让学生走入生活,在生活中寻找数学。教学目标1、在搭立体图形和多方位观察立体图形的实践活动中,发展学生的空间观念,培养学生的观察能力和动手操作能力。2、能正确辨认正面、侧面、上面观察到的立体图形的形状。3、在拼搭立体图形的实践活动中,体验并初步学会用上、下、左、右、前、后等词描述正方体的相对位置。教学过程一、引入新课(1)同学们,请仔细观察,你能看出这个箱子是做什么用的吗?(抽奖箱)你怎么知道这是抽奖箱?(箱子的左面上写着呢)哪个超市在搞抽奖活动呢?(思达超市;因为箱子的右面上写着)(2)这是箱子的哪个面?抽奖箱一共有几个面?一起来数一数。(3)刚才同学们对抽奖箱观察的非常仔细,要知道一个物体的全貌,观察是一种非常有效的方法,我们今天继续来学习观察物体(板书课题)二、搭一搭活动(1)引入:首先给同学们介绍一个好朋友,它的名字叫淘淘,淘淘是一名建筑工人,很多房子都是它一砖一瓦搭建起来的,平常它最喜欢拿一些正方体搭来搭去,今天我们就和淘淘一起玩一个搭一搭的小游戏,你们想不想玩?(想)(2)个别学生当建筑工人:淘淘的指令是,先把三个正方体横着摆一排,再在中间正方体的上面放一个正方体。他搭的对吗?(3)这位建筑工人表现的太棒了,下面淘淘要请你们都当建筑工人,(课前准备:规定好同位中谁拿正方体,谁先操作)请拿出我们准备好的四个小正方体,淘淘的指令是,先拿出两个正方体横着摆一排,在左边的正方体的上面摆一个正方体,再在右边的正方体的前面摆一个正方体。(4)检验:请一同学到前面来搭,大家看他搭的对吗?你们都是合格的建筑工人!(请一个同学到前面根据指令再搭一边,其余同学看和自己搭的是否一样)(5)(出示)这是淘淘搭建的立体图形,你知道它是怎么搭的吗?请拿出你的正方体搭一搭。(6)说一说你是如何搭的?并到前面展示自己搭的过程。(引导:他的发言怎么样?)生1:先竖着放两个正方体,在后面正方体的右面放一个,再在后面正方体的上面放一个。(他搭的对吗?如果说的更简洁一些就更好了)生2:先横着放两个正方体,在左面正方体的前面放一个,再在左面正方体的上面放一个。(他搭的可以吗?他说的怎么样?)生3:先上下放两个正方体,在下面正方体的后面放一个,再在下面正方体的前面放一个。(太好了,他不光搭的对,并且表达的非常简洁)(7)请个别同学当设计师。(8)请同位两个轮流当设计师和建筑工人。教学内容:百分数的意义和读写法(第十一册P7778)。教学目标:1、通过比较、交流、整理等学习活动,理解百分数的意义,学会正确地读写百分数,感受百分数与分数之间的联系与区别。2、通过解释百分数的实际意义,体会百分数与社会的密切联系和在生活中的广泛应用。3、经历信息收集、交流和表达的过程,促进个性化的数学理解和表达。4、学会在学习过程中积累个人的学习成果,初步建立自我评价与反思的意识。教学重点:百分数的意义。教学难点:理解百分数的意义以及百分数与分数的联系和区别。教学过程:一、创设情境,感知意义。1、谈话引入:下个月就要举行达标运动会了,同学们都在加紧锻炼、争取达标。体育老师对班上三个小组的同学进行了一次测试,采集了如下信息:组别分页代码3、观察上面的信息,百分数的分母都是多少,它有什么优点?分子可以是什么样的数?(使学生明确:百分数的分母都是100,所以便于比较大小;百分数的分子可以是整数,也可以是小数,可以小于、等于或大于100o)4、举例,你在生活中还见过哪些百分数?(根据学生回答出示实物,请学生说一说百分数的意义)5、老师也找了几个数,出示:(1) 一堆煤97/100吨,运走了它的75/100。(2) 23/100米相当于46/100米的50/100。哪几个分数可以改写成百分数的形式,哪几个不能?为什么?说一说百分数与分数有怎样的联系和区别。设计意图这几个环节都是紧密围绕百分数的意义让学生解释、表达、交流,同时不露痕迹地练习了百分数的读法和写法。学生不仅获得了丰富的信息量,体会到百分数在生活中的广泛应用;而且初步学会对信息进行整理和分析,进一步认识了百分数的特点,加深理解了分数与百分数的联系和区别,可谓一举多得。三、巩固应用,拓展延伸。1、我市将发行10亿元企业债券,用于城市基础设施建设,募集到的钱将分配在七大民生工程上(出示方格图)。你能从图中找出各项投资所占的百分比吗?2、用百分数表示下面的成语。百里挑一十拿九稳百发百中一箭双雕3、下面的说法对吗?(1)分母是100的分数一定是百分数。(2)百分数是分数的一种,所以3/4吨二75%吨。(3) “小明的身高是89/100米”与“小华身高是小明的89/100”两个分数含义相同。(4) 一件衣服降价30%,意思是现价比原价少了百分之三十。设计意图选取学生身边的素材和学生感兴趣的内容进行巩固练习,特别注意突出本节课的重点和难点,提高练习效率。四、总结反思,升华提高。这节课快结束了,同学们的学习情绪如何?写一写自己愉快、紧张、遗憾的各占百分之几?说一说如果有遗憾,遗憾在什么地方,怎样改进?设计意图加强学生的情感体验,使学生灵活运用所学的知识进行自我评价和反思,激励学生努力学好数学。同时有利于教师了解学生的学习状态和心理变化,及时调整教学策略,促进教与学的和谐发展。教学目标:1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。教学过程:一、情境导入1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?预设可能提出的问题:(1)周长和面积(2)长比宽多几米?(3)宽比长短几米?(4)长是宽的几倍?(5)宽是长的几分之几?师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。(2)交流小结:板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2:3和3:2中,比的前项和后项分别是是几?(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)(二)、完成试一试在口常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1:4,问:这里的白色部分和蓝色部分分别表示什么?你知道1:4表示什么吗?(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)三、教学例2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)1、想一想,我们怎样求两人的速度?2、2、学生计算答案,汇报填表。3、明确:因为速度二路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900:15o)900:15表示什么呢?(路程÷时间。)4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900:20)(二)、理解比的意义1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比两个数相除)2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)(三)、认识“比值”、及与“比”的区别:1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?我们把比的前项除以后项所得的商叫做比值。2、说说这几个比值分别表示什么?3、讨论:同学们觉得比与比值的区别在哪里?(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)(四)、“试一试”1、完成“试一试”:(学生独立完成,指名板演)2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2:3除了写成这种形式以外,也可以写成分数形式的比:3/2O(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)(五)、比、除法和分数的关系1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是O吗?(根据学生的汇报填表)分页代码二、认一认师:像上面那样,(板书)两个数相除,又叫做两个数的比。如6/4,写作6:4读作6比4比号6是这个比的前项,4是这个比的后项,1.5是这个比的比值。读一读。写一写。(第51页练一练第一题。)三、练一练。(第51页练一练第二题。)四、说一说,全课总结。今天我们认识了比,说一说你学到什么知识?生活中还有哪些比的例子?有什么新问题?(三)教学目标:1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。2、弄清比同除法、分数的关系,明白比的后项不能是O的道理,同时懂事物之间是相互联系的。3、进一步培养学生分析、比较、归纳、概括能力和自主学习的能力。教学重点:理解比的意义,比与分数、除法的关系。教学难点:理解比的意义教学过程:比的意义:同类量的比问:谁来向听课的老师介绍一下,我们班级的人数情况。男生有多少人?女生有多少人?(板书)如果把我们班的男生人数和女生人数放在一起比一比,可以得出什么结论?男生人数比女生人数少?你能用一个式子来表示吗?板书:用减法。27-19从这个式子里,还可以得出什么结论?女生人数比男生人数多问:除了减法之外,你还能想出其它比较的方法吗?可以算出什么?板书:男生人数是女生人数的几分之几?女生人数是男生人数的多少倍?会列式吗?19/2727/19说明:像这样用除法对两个量进行比较时,还有一种新的表示方法:比。(板书课题)问:求男生人数是女生人数的几分之几,是哪个量和哪个量比较?像这样的求男生人数是女生人数几分之几,又可以说成男生和女生人数的比是1 9比27谁来说一说,求男生人数是女生人数几分之几还可以怎么说?(学生重复一遍)请同学们再看一看,求女生人数是男生人数的几倍,是哪个量和哪个量比较?根据上面的例子,想一想,女生人数是男生人数的几倍还可以怎么说呢?2 7比19通过上面的例子我们知道,谁是谁的几倍或几分之几,都可以说成谁和谁的比。2、不同类量的比说明:在日常生活中,对两个数量进行比较的例子还有很多。例如在路上行驶的汽车。出示:一辆汽车2小时行驶9O千米。你能把什么算出来?也就是汽车的速度。列式:90/2=45(千米)同学们请看,求汽车的速度,实际上是用哪两个量进行比较?那么汽车的速度又可以说成谁和谁的比?启发学生:汽车的速度又可以说成路程和

    注意事项

    本文(《分数的乘法》教学设计.docx)为本站会员(李司机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开