欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    晋中市暑假培训课程标准讲座.ppt

    • 资源ID:5744043       资源大小:5.61MB        全文页数:267页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    晋中市暑假培训课程标准讲座.ppt

    同样的阅读,不一样的感觉,义务教育阶段数学课程新课标(2011年版),迎泽区教研室 陈静,一、此次课标修订最关注的是什么?二、数学课标有哪些新变化?课堂教学改革如何跟进?,添加标题,在基础教育阶段应该培养学生的创新意识和创新能力,这是我们研制课程标准和未来教学的最基本的出发点.,一、此次课标修订最关注的是什么?,此次课标修订特别关注三个方面要求:时代发展的要求 数学学科的要求 课堂教学的要求,创新能力的基础,创新能力依赖于:知识的掌握、思维的训练、经验的积累。思维的训练:演绎能力、归纳能力。,处理好四个关系:,过程和结果,学生自主学习和教师讲授,合情推理和演绎推理,生活情境和知识系统性,二、数学课程标准有哪些新变化?课堂教学改革如何跟进?,课程标准修订后呈现的变化,数学课标修订的主要方面:,1.关于基本理念2.关于设计思路3.关于课程目标4.关于课程内容5.关于课程实施,1.关于基本理念的修改(在前言中增加了课程性质的描述、修改、丰富了基本理念的一些提法),关于数学观 如何认识数学,原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程新课标:数学是研究数量关系和空间形式的科学,关于数学观 如何认识数学,整个义务教育阶段和高中阶段的数学都是在研究关系,具体来说,研究数量关系、图形关系和随机关系等三类关系。,数学的意义,数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。,数学教育的作用,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。,数学课程的性质,义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。,1.理念由三句变两句,6条改5条:,原来的“三句话”:人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展现在的“两句话”:人人都能获得良好的数学教育不同的人在数学上得到不同的发展,关于“人人都能获得良好的数学教育”,与过去的提法相比:更深的意义和更广的内涵;落脚点是数学教育而不是数学内容;体现了更强的时代精神和要求(公平的、优质的、均衡的、和出发点不变(人人、不同的人);和谐的、可持续发展的教育)。,良好的数学教育,对于学生来说是适宜的,满足发展需求的教育。,全面实现育人目标的教育。,促进学生可持续发展的教育。,促进公平、注重质量的教育。,在数学活动中,探索数学本质 体验数学精神 学到数学知识 学会数学思维 掌握数学方法 感悟数学思想 形成数学能力 提升数学素养,数学素养,主动探寻并善于抓住数学问题的背景和本质的素养熟练地用准确、简明、规范的数学语言表达自己数学思想的素养良好地科学态度和创新精神,合理提出新思想、新理念、新方法的素养善于对现实生活中的现象和过程进行合理简化和量化,建立数学模型的素养,严,数学素养,严密的逻辑推理、周密的思考从数学角度分析问题、解决问题清晰而又条理地说明自己的观点能用数学思想方法处理非数学领域遇到的问题,关于基本理念的修改,原课标:数学课程 数学 数学学习 数学教学 评价 信息技术修改后:数学课程 课程内容 教学活动 学习评价 信息技术,在结构上由原来的6条改为5条,将原标准第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。原课标:数学课程数学数学学习数学教学评价信息技术修改后:数学课程课程内容(新增)教学活动(合并)学习评价信息技术,我们需要什么样的数学教学?,教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。,树立正确的数学教学观,什么是数学课堂教学中最需要做的事?,数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。改变人才培养模式 要从这些方面入手!,原课标:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”,学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。,原课标:教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。,原课标:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”,应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。,树立正确的评价观,如何看待信息技术的运用?,数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,2.关于设计思路的修改,学段划分保持不变对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词对四个学习领域的名称作适当调整对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释,核心 概念,掌握:在理解的基础上,把对象用于新的情境。运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。经历:在特定的数学活动中,获得一些感性认识。体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。,在标准中,使用了一些词,表述与上述术语同等水平的要求程度。这些词与上述术语之间的关系如下:(1)了解,同类词:知道,初步认识;(2)理解,同类词:认识,会;(3)掌握,同类词:能。(4)运用,同类词:证明。(5)经历,同类词:感受、尝试。(6)体验,同类词:体会。,关于10个核心概念的分析 原课标也称为“关键词”,原课标:数感 符号感 空间观念(6个)统计观念 应用意识 推理能力修改后:数感 符号意识 运算能力(10个)模型思想 空间观念 几何直观 推理能力 数据分析观念 应用意识 创新意识,核心概念之一:数感 存在数感吗?,(1)实例给人的启示:实例:2010年2月25日,国家统计局公布的2009年国民经济和社会发展统计公报显示:我国70个大中城市房屋销售价格同比上涨1.5%,其中新建住宅价格上涨1.3%。此报告一出立刻引起全国一片哗然。公众普遍反映此数据与实际状况严重不符。,面对公众质疑,有关部门召开专门会议,讨论统计数据来源是否真实可靠?统计方法是否科学?舆论提出的一个问题是:不论统计部门统计方式是否科学,为何公众对房价的感觉与统计结果是大相径庭的呢?此例说明数感的确是存在的,它与公众的社会生活息息相关,并已成为现代社会公民所具有的基本数学素养的一部分,标准去掉了原来实验稿中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。标准将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。标准将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。,数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。比如,一位学生看见某一博物馆的介绍资料中提到“7000平方米森林中生活着两只东北虎”时,发现了其不合理处,原来应该是“7000平方千米森林中生活着两只东北虎”。,数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断,如,0.25就是1/4。还需要对数之间的大小关系有所感悟,如,0.49比1/2小但很接近,1.3介于1和1.5之间。,将数感表述为“感悟”,原来,对数感内涵的认识较多强调其直觉、感知、潜意识、经验等方面,在教学中常常感到“虚”,找不到教学支点。将数感表述为“感悟”不仅使这一概念有了较为明晰的界定,也使得这一概念有了更实在的意义,有利于一线教师的理解和把握。它揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。感悟是既通过肢体又通过大脑,因此,既有感知的成分又有思维的成分,核心概念之二:符号意识,(1)何为符号意识?所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统符号意识(Symbol sense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。,符号感(Symbol Sense)为何改为符号意识?,英文单词一样,但改动后中文意义有所不同符号感主要的不是潜意识、直觉符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动,这是一个“意识”问题,而不是“感”的问题,(2)符号意识的含义,标准对符号意识的表述有这样几层意思值得我们体会:其一,能够理解并且运用符号表示数、数量关系和变化规律。即对数学符号不仅要“懂”,还要会“用”,符号“操作”,其二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识。这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等,符号表达与符号思考,其三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。这又引出了两个除符号理解和操作之外的要求,即符号的表达与思考。概括起来,符号意识的要求就具体体现于符号理解、符号操作、符号表达、符号思考四个维度。,符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。,例:在下列横线上填上合适的数字,字母或图形,并说明理由。1,1,2;1,1,2;,;A,A,B;A,A,B;,;,;,;,;通过观察规律,使一学段学生能够感悟到:对于有规律的事物,无论是用数字还是字母或图形都可以反映相同的规律,只是表达形式不同而已。,符号表达的多样性,发展符号意识最重要的是运用符号进行数学思考,我们不妨把这种思考称为“符号思考”,例:“房间里有4条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60个,那么有几个椅子和几个凳子?”如果学生没有经过专门的“鸡兔同笼”解题模式的思维训练,他完全可以使用恰当的符号进行数学思考,找到解题思路。如可以用表格分析椅子数的变化引起凳子数和腿总数的变化规律,直接得到答案;也可采用一元一次方程或二元一次方程组的、关于字母的思考方式来加以解决。,核心概念之三:空间观念(1)空间观念的含义,空间观念是指对物体及其几何图形的形状、大小、位置关系及其变化建立起来的一种感知和认识,空间想象是建立空间观念的重要途径空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,几乎很难谈发明与创造,(2)标准中空间观念所提出的要求,标准从四个方面提出了要求:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。,核心概念之四:几何直观 此次新增的核心概念,(1)对几何直观的认识顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;一是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来几何直观就是依托、利用图形进行数学的思考、想象。它在本质上是一种通过图形所展开的想象能力。,希尔伯特(Hilbert)在其名著直观几何一书中指出,图形可以帮助我们发现、描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。几何直观在研究、学习数学中的价值由此可见一般。,(2)标准中几何直观的含义,标准指出:“几何直观是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”,它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的“图形表示”和“图形分析”。,前者指教学中要培养学生通过画图来表达数学问题的习惯,能画图时尽量画;后者指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求解决问题的思路。,(3)几何直观的培养 使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、证明等数学的过程变得直观,几何直观能力主要包括:,空间想像能力,直观洞察能力,用“图形语言”来思考问题能力,小学几何教学更多地关注的是实验几何、经验几何和直观几何,让学生感受几何直观的作用,培养学生的几何直观能力。通过学生的拼一拼、折一折、量一量等操作之后,更多的是要求学生相信自己的眼睛,经过不完全归纳之后,就可以得出一些正确的结论。,(“数”“形”结合思想),低,高,空间想像能力,识图 画图 制作模型 观察物体,直观洞察能力,三点半,时针和分针的夹角是多少度?,两边之和大于第三边,用“图形语言”来思考问题能力,两个长方形完全相同。第一个长方形的长减少3分米,宽不变;第二个长方形的宽减少3分米,长不变。变化后两个长方形的面积怎样?,直观地抽象,0.1米,0.9米,1.3米,0,1,2,直观是前提,抽象是本质,适度是关键,重视变换让图形动起来,几何变换或图形的运动既是学习的对象,也是认识数学的思想和方法。在数学中,我们接触的最基本的图形都是对称图形,例如圆、正多边形、长方体、长方形、菱形、平行四边形等;另一方面,在认识、学习、研究非对称图形时,又往往是运用这些对称图形为工具的。变换又可以看作运动,让图形动起来是指再认识这些图形时,在头脑中让图形动起来,充分地利用变换去认识、理解几何图形是建立几何直观的好办法。,学会从“数”与“形”两个角度认识数学 数形结合首先是对知识、技能的贯通式认识和理解。以后逐渐发展成一种对数与形之间的化归与转化的意识,这种对数学的认识和运用的能力,应该是形成正确的数学态度所必需要求的。,人教版三年级下册,杭州市采荷第二小学赵海峰,1分,1元,0.01元,1元,0.05,0.23,大小蜗牛爬杆比赛,10,9,8,7,6,5,4,3,2,1,0分米,11,努力上升3分米,疯狂上升76厘米,第一天,3分米=米=()米,76厘米=米=()米,10,9,8,7,6,5,4,3,2,1,0分米,11,第二天,继续向上爬,不小心滑下去啦,10,9,8,7,6,5,4,3,2,1,0分米,11,第三天,()米,0.9,0.90,10,9,8,7,6,5,4,3,2,1,0分米,11,第四天,0.9,0.90,努力向上攀登,10,9,8,7,6,5,4,3,2,1,0分米,11,第四天,1.1米,0.9,0.90,努力向上攀登,努力向上攀登,例如,若每两人握一次手,则3个人共握几次手,4个人共握几次手,n个人共握几次手?用归纳的方法探索规律,如下表:,人数 握手次数 规律 2 1 1 3 3 1+2 4 6 1+2+3 n 1+2+3+(n-1),A1,A2,A3,AN,对于七、八年级的学生来说,要发现“1+2+3+(n-1)”这个规律并不容易,计算1+2+3+(n-1)得到 1/2 n(n-1)也有困难。但是,如果把“人”抽象成“点”,“两人握1次手”抽象成“两点之间连接一条线段”,那么借助图形的直观就能简明地解决问题。如图,对于n点中的任何一个点,它与其它的(n-1)个点共可连接(n-1)条线段,因而n个点共可连接n(n-1)条线段。因为两点之间有且只有一条线段(线段AB与线段BA是同一条线段),所以共可连接 1/2 n(n-1)条线段。,用“图形法”解决问题,掌握、运用一些基本图形解决问题 把让学生掌握一些重要的图形作为教学任务,贯穿在义务教育阶段数学教学、学习的始终。例如,除了前面指出的图形,还有数轴,方格纸,直角坐标系等等。在教学中要有意识地强化对基本图形的运用,不断地运用这些基本图形去发现、描述问题,理解、记忆结果,这应该成为教学中关注的目标。,核心概念之五:数据分析观念 由统计观念改为数据分析观念,原课标中的“统计观念”,强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等要求。此次将其改为“数据分析观念”,就是希望改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。,(1)数据分析观念的含义 数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。,一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法三是体验性要求:通过数据分析体验随机性,(2)数据分析观念的要求:,核心概念之六:运算能力 此次增加的核心概念,运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能,并发展运算能力。,(1)标准对运算能力的要求,标准指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。,(2)对运算能力的认识,运算的正确、有据、合理、简洁是运算能力的主要特征。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。,运算能力是标准新增加的核心概念。标准指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题”。一是指运算;一是指运算能力。运算能力不仅仅会算和算正确,还包括对于运算的本身要有理解,比如运算对象、运算的意义、算理等。,核心概念之七:推理能力,此次标准提出的推理能力与过去相比,有这样一些特点:一是进一步指明了推理在数学学习中的重要意义。标准指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。它对教学的启示是,不仅要引导学生认识到推理是数学的重要基础之一,它与人们的生活息息相关,更重要的是要逐步培养学生运用推理进行思维的方式。,突出了合情推理与演绎推理,二是基于数学推理的特点,突出了合情推理与演绎推理这条主线。指出在数学思维和问题解决的过程中,两种推理功能不同,相辅相成合情推理用于探索思路,发现结论;演绎推理用于证明结论。,引导学生多经历“猜想证明”的问题探索过程,添加标题,数学双基.基础知识和基本技能.基础知识本质上是概念的记忆和命题的理解,基本技能,主要是证明的技能和运算的技能;我国的数学教育主要关注的是演绎能力的培养,添加标题,“:我很有幸能够在两个具有不同文化背景的国度里学习和工作,我在中国学到了演绎能力,在美国学到了归纳能力.”杨振宁,添加标题,发现真理的主要工具是归纳和类比.归纳能力是能够熟练使用归纳推理的能力.演绎推理表现为一种知识,归纳推理则表现为一种智慧.,添加标题,“知识在本质上是一种结果,可能是经验的结果,也可能是思考的结果.”“智慧并不表现在经验的结果上,也不表现在思考的结果上,而表现在经验的过程,表现在思考的过程中.”“智慧表现于对问题的处理,对危难的应付,对实质的思考以及实验的技巧等等.”归纳能力是建立在实践的基础上的,更多地依赖于过程,依赖于经验的积累.,添加标题,要培养一个人的创新能力,必须注重过程,启发思考,总结经验,教会反思.“过程的教育”不是指在授课时要讲解、或者让学生经历知识产生的过程,甚至不是指知识的呈现方式.而是学生探究的过程、思考的过程、抽象的过程、预测的过程、推理的过程、反思的过程等等.,合情推理包括分类、归纳、类比、联想、猜测等,它们常常是得到新结论的方法和途径,合情推理对于探索规律和发现结论不可或缺。但是,合情推理的结论可能是正确的,也可能是错误的,还需要依靠演绎推理去证明或者证否。对此,在第一学段和第二学段,可以逐渐渗透给学生知道,在第三学段则应该明确地告诉学生,让学生对此有清醒的认识。,两端都栽:,三是强调推理能力的培养“应贯穿于整个数学学习过程中”。,其一,它应贯穿于整个数学课程的各个学习内容,其二,它应贯穿于数学课堂教学的各种活动过程其三,它应贯穿于整个数学学习的环节,通过多样化的活动,培养学生的推理能力,反思传统教学,对学生推理能力的培养往往被认为就是加强逻辑证明的训练,主要的形式就是通过习题演练以掌握更多的证明技巧。显然,这样的认识是带有局限性的。,标准强调通过多样化的活动来培养学生的推理能力。如标准提出:“在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,”(总目标),“体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多样化形式的数学活动中,发展合情推理与演绎推理的能力”(三学段),传统数学教育重视知识的传授和技能的训练。“知识在本质上是一种结果,可以是经验的结果,也可以是思考的结果。”结果的教育、知识的积累。,如何培养归纳能力,归纳推理可以表现为一种智慧。“智慧并不表现在经验的结果上,也不表现在思考的结果上,而表现在经验的过程,表现在思考的过程。”归纳能力是建立在实践的基础上的。过程的教育、经验的积累。,关于基本思想,“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想,但最上位的思想还是演绎和归纳。,之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但不具有一般性,作为一种思想掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是希望学生领会之后能够终生受益的那种思想方法。,核心概念之八:模型思想,在义务教育阶段提出模型思想主要有如下理由:第一,模型思想是一种基本的数学思想;第二,模型思想及相应的建模活动与很多课程 目标点密切相关(如数感、符号意识、几何直观、发现、提出问题能力、数学 的联系、数学应用意识、改善数学学习 方式等等),提出模型思想能很好地支 撑这些课程目标的实现;,第三,模型思想本身就渗透于各课程内容领域之中,突出模型思想有利于更好理解、掌握所学内容;第四,培养学生的模型思想对义务教育阶段学生来说是可行的。此外还要看到,数学建模已是高中数学课程的学习内容,提出模型思想亦能更好与高中课程衔接。,标准说明了模型思想的价值,数学模型是沟通数学与现实世界的桥梁。数学得到的一些结果要应用于现实世界,是通过数学模型。小学阶段有两个典型的模型,其它的模型都是在这两个基础上变化的。一个是“总量=部分+部分”,另一个是“路程速度时间”或“总价单价数量”。,标准从义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:,首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。,方程与模型,核心概念之九:应用意识,应用意识有两个方面的含义:一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题 数学知识现实化,另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。现实问题数学化,核心概念之十:创新意识,创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。,从基础、核心、方法三个方面指明了创新意识的要素。这为我们培养学生创新意识提出了几个基本的切入点和路径,使创新意识的培养落在了比较实在的载体上,即围绕这三个要素,教师应紧紧抓住“数学问题”、“学会思考”、“猜想、验证”这几个点,做足教学中的“文章”,创新意识培养的目标就有可能得到落实。,3.关于课程目标的修改,在目标的结构上仍按:,总体目标,总体表述,知识技能,数学思考,问题解决,情感态度,学段目标,第一学段,第二学段,第三学段,(1)目标上有哪些变化?,在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。,数学课程总目标有那些新变化?,变化之一:明确提出四基,即“基础知识、基本技能、基本活动经验、基本思想”变化之二:针对创新精神和实践能力的培养,明确提出“发现问题和提出问题的能力、分析问题和解决问题的能力”变化之三:针对了解知识的来龙去脉,明确提出“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”,数学课程总目标有那些新变化?,变化之四:对于情感态度的培养,进一步明确“了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯”变化之五:针对学科精神的培养,明确提出“具有初步的创新意识和科学态度”,(2)对几个新目标点的分析,目标点一:“四基”从“双基”到“四基”对数学教学有何意义?,双基基础上变为四基的本质是想培养学生的思维形式和思维方法,培养学生的智慧和创造力。,如何理解?,三个常用的概念:数学思想 数学方法 数学思想方法,标准中“数学的基本思想”主要指:数学抽象的思想;数学推理的思想;数学模型的思想。,数学抽象的思想派生出的有:分类的思想;集合的思想;数形结合的思想;变中有不变的思想;符号表示的思想;对称的思想;对应的思想;有限与无限的思想等。,数学推理的思想派生出的有:归纳的思想;演绎的思想;公理化思想;转换与化归的思想;联想与类比的思想;逐步逼近的思想;代换的思想;特殊与一般的思想等。,数学模型的思想派生出的有:简化的思想;量化的思想;函数的思想;方程的思想;优化的思想;随机的思想;抽样统计的思想等。,数学方法:在用数学思想解决具体问题时,会形成程序化的操作,就构成数学方法。数学方法具有层次性,较高层次的有:演绎推理的方法,合情推理的方法,变量替换的方法等价变形的方法,分类讨论的方法等。较低层次的有分析法,综合法,穷举法,反证法,构造法待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,配方法,列表法,图象法等。,获得基本的活动经验“活动经验”与“活动”密不可分,要有“动”手动、口动和脑动。既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的活动,也包括课程教学中特意设计的活动。,数学活动经验的类型:,直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验。直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等。而间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等。设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等。思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等。,数学活动经验并不仅仅是解题的经验,更加重要的是在数学活动中思考的经验,提出数学活动经验,还有一个重要目的,就是培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果,因为进行创造,获得新结果的主要途径是作出猜想。数学活动经验并不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验。,知识 经验 思想 智慧,学生形成智慧,不可能仅仅依靠掌握丰富的知识,一定还需要实践及在实践中取得经验。数学思想也不仅在探索推演中形成,还需要在数学活动经验的积累上形成。,数学基本活动经验:,学习主体通过亲身经历数学活动过程所获得的具有个性特征的经验。,“四基”是客观性知识与主观性体验的结合是结果性知识与过程性活动的结合,故事一则 说的是拿破仑在一次战斗中与卫兵走散,又被敌兵追赶,惶急之下,求助于一个毛皮商人。毛皮商人将之藏于一堆毛皮之中,追兵对着毛皮一顿乱戳后走了,这位法国皇帝的卫兵也终于赶来了。毛皮商人问拿破仑:“当敌人对着毛皮乱戳的时候,你是什么感觉?”拿破仑大怒,命令卫兵枪毙这个胆大包天、口不择言的商人。商人面向墙壁,听着身后整齐的拉动枪栓的声响,刹那间百感交集。等了很久,拿破仑微笑着对商人说:“现在,你知道我当时的感受了吧?”从教育的角度来说,这个故事能给我们一些怎样的启发?,参考答案 对于教育来说,这是一个很有启发性的故事。我们知道,真正深刻的教育,是能够触及灵魂的教育,这样的教育才是恒久有效的。亲身经历过这样一次死的威胁,毛皮商人才可能真正了解当死亡的威胁来临时的感受,不然,任别人怎样述说,也是隔靴搔痒。美国国家委员会在人人关心数学教育的未来这个报告中指出:“实在说来,没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自己去学数学。”“学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”,“四基”与数学素养,掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验 发展学生的数学素养,培养学生的创新精神和实践能力,史宁中教授指出:“基本思想主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。,目标点二:为何要强调 发现问题、提出问题?,在数学中,发现结论常常比证明结论更重要创新性的成果往往始于问题传统教学在这方面的不足问题解决的全过程是发现、提出、分析、解决问题的过程,“发现问题和提出问题”,所谓“发现问题”,是经过多方面、多角度的数学思维,从表面上看来没有关系的一些现象中找到数量或者空间方面的某些联系,或者找到数量或者空间方面的某些矛盾,并把这些联系或者矛盾提炼出来。所谓“提出问题”,是在已经发现问题的基础上,把找到的联系或者矛盾用数学语言、数学符号集中地以“问题”的形态表述出来发现、提出、分析、解决针对的是问题解决的全程,是数学能力要求,我们要通过这样的课堂 培养学生的问题意识,发现问题、提出问题是创新的基础诺贝尔奖金获得者李政道教授认为“我们学习知识,目的是要做到学问。学习,就是学习问问题,学习怎样问问题。”,做学问与 学问,教师要善于将陈述性知识的教材进行二度设计转换成一系列问题序列,使教学成为问题解决的活动过程教师更要善于创设问题情境,引导学生自己去发现、提出、分析解决问题,目标点三:增强数学的联系,这里说到学生要体会三个方面的联系:数学知识之间的联系(系统性、综合性)数学与其他学科之间的联系(相关性、工具性)数学与生活之间的联系(应用性),目标点四:数学学习习惯,第一次提出“培养学生良好的数学学习习惯”标准在“情感与态度”目标中具体指明了其含义:“养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。”,什么是学习习惯?为什么要提出培养学习习惯?,学习习惯指在长期的学习中逐渐养成的、较稳固的学习行为、倾向和习性。之所以提出数学学习习惯,一是因为在长达九年的义务教育学习阶段,一个人在学习上的习惯总是处于不断的养成过程中,它是与学习行为相伴而行的,客观存在的。,在日常教学中刻意诱导,潜移默化,点滴积累,通过长时间的磨练,方能习以为常。,二是良好的数学学习习惯具有很强的心理内驱力和学习目标达成的惯性力,它有利于学生通过自主学习形成学习的正向迁移,提高学习效率三是良好的数学学习习惯能帮助学生逐步实现由“学会”到“会学”的转变,使学生今后在适应终身学习上受益。,培养科学态度,1.了解数学的价值,提高学习兴趣 2.养成良好的学习习惯和科学态度,1.了解数学的价值,提高学习兴趣 数学价值体现在数学的应用:日常生活、工程技术以及其他学科。数学价值体现在教育上:学生在数学学习中学到了从数学角度看问题,学到了理性思维,思考更有条理,表达更加清晰。数学在培养学生的抽象能力、推理能力和创新能力上,发挥着独特的不可替代的作用。,2.养成良好的学习习惯和科学态度 良好的学习习惯可以概括为:认真勤奋,独立思考,合作交流,反思质疑。良好的科学态度有许多内涵,例如坚持真理,修正错误,严谨周密,实事求是等。实事求是是科学态度的核心。,课程内容结构上的变化,数与代数 内容结构没有变化,第一学段是“数的认识;数的运算;常见的量;探索规律”。第二学段是“数的认识;数的运算;式与方程;正比例、反比例;探索规律”。第三学段是“数与式;方程与不等式;函数”。,图形与几何 第一、二学段,内容结构没有变化。第三学段,将原来的四部分调整为三部分:原来的“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”,调整为“图形的性质”、“图形的变化”、“图形与坐标”。其中的“图形的性质”是实验稿中第一和第四部分的整合。,统计与概率 内容结构有较大调整,层次性更加明确。强调培养数据分析观念,与学生现实

    注意事项

    本文(晋中市暑假培训课程标准讲座.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开