欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    复数的几何意义(公开课).ppt

    • 资源ID:5697176       资源大小:1.53MB        全文页数:33页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复数的几何意义(公开课).ppt

    教学重难点,重点,难点,对复数几何意义的理解以及复数的向量表示.,由于理解复数是一对有序实数不习惯,对于复数几何意义理解有一定困难.对于复数向量表示的掌握有一定困难.,特别地,a+bi=0.,4.已知x、yR,(1)若(2x-1)+i=y-(3-y)i,则x=、y=;(2)若(3x-4)+(2y+3)i=0,则x=、y=.,想一想练一练,复数的几何意义,1.对 虚数单位i 的规定,i 2=-1;,可以与实数一起进行四则运算.,2.复数z=a+bi(其中a、bR)中a叫z 的、b叫z的.,实部,虚部,z为实数、z为纯虚数.,b=0,练习:把下列运算的结果都化为 a+bi(a、bR)的形式.2-i=;-2i=;5=;0=;3.a=0是z=a+bi(a、bR)为纯虚数的 条件.,必要但不充分,课前复习,在几何上,我们用什么来表示实数?,想一想?,实数的几何意义,类比实数的表示,可以用什么来表示复数?,实数可以用数轴上的点来表示.,实数,数轴上的点,(形),(数),一一对应,回忆,复数的一般形式?,Z=a+bi(a,bR),实部!,虚部!,一个复数由什么唯一确定?,O,思考1:复数与点的对应,X,Y,()+i;()+i;()i;()i;();()i;,思考2:点与复数的对应(每个小正方格的边长为1),X,Y,记住!,由此可知,复数集C和复平面内所有的点所成的集合是一一对应的.,总结,复数z=a+bi,复平面内的点Z(a,b),一一对应,结论,复数的几何意义之一是:,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面(简称复平面),一一对应,z=a+bi,复数的几何意义(一),注意,观 察,实轴上的点都表示实数;虚轴上的点都表示纯虚数,除原点外,因为原点表示实数0.,复数z=a+bi用点Z(a,b)表示.复平面内的点Z的坐标是(a,b),而不是(a,bi),即复平面内的纵坐标轴上的单位长度是1,而不是i.,(A)在复平面内,对应于实数的点都在实 轴上;(B)在复平面内,对应于纯虚数的点都在 虚轴上;(C)在复平面内,实轴上的点所对应的复 数都是实数;(D)在复平面内,虚轴上的点所对应的复 数都是纯虚数.,例1.辨析:,1下列命题中的假命题是(),D,2“a=0”是“复数a+bi(a,bR)是纯虚数”的().(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件,C,3“a=0”是“复数a+bi(a,bR)所对应的点在虚轴上”的().(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件,A,练一练,复平面内的原点(0,0)表示();,实轴上的点(2,0)表示();,虚轴上的点(0,-1)表示();,点(-2,3)表示().,实数0,实数2,纯虚数-i,复数-2+3i,例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围.,表示复数的点所在象限的问题,复数的实部与虚部所满足的不等式组的问题,转化,(几何问题),(代数问题),一种重要的数学思想:数形结合思想,变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值.,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2.,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a,Z(a,b),z=a+bi,小结,x,O,z=a+bi,y,复数的绝对值,(复数的模),的几何意义:,Z(a,b),对应平面向量 的模|,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离.,|z|=|,小结,实数绝对值的几何意义:,复数的模其实是实数绝对值概念的推广,x,O,A,a,|a|=|OA|,实数a在数轴上所对应的点A到原点O的距离.,注意,向量 的模r叫做复数z=a+bi的模,记作|z|或|a+bi|.如果b=0,那么z=a+bi是一个实数a,它的模等于|a|(就是a的绝对值).由模的定义可知:|z|=|a+bi|=r=(r 0,).,为了方便起见,我们常把复数z=a+bi说成点Z或说成向量 且规定相等的向量表示同一个复数.,例3 求下列复数的模:(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i,(2)满足|z|=5(zC)的z值有几个?,思考:,(1)满足|z|=5(zR)的z值有几个?,(4)z4=1+mi(mR)(5)z5=4a-3ai(a0),这些复 数对应的点在复平面上构成怎样的图形?,小结,x,y,O,设z=x+yi(x,yR),满足|z|=5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,以原点为圆心,半径为5的圆.,图形:,5,x,y,O,设z=x+yi(x,yR),满足3|z|5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,3,3,3,3,图形:,以原点为圆心,半径3至5的圆环内,(1)|z(1+2i)|,(2)|z+(1+2i)|,例5 已知复数z对应点A,说明下列各式所表示的几何意义.,点A到点(1,2)的距离,点A到点(1,2)的距离,(3)|z1|,(4)|z+2i|,点A到点(1,0)的距离,点A到点(0,2)的距离,已知复数m=23i,若复数z满足等式|zm|=1,则z所对应的点的集合是什么图形?,以点(2,3)为圆心,1为半径的圆.,课堂小结,1.复数的实质是一对有序实数对;,2.用平面直角坐标系表示复平面,其中x轴叫做实轴,y轴叫做虚轴;,3.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;,4.复数z=a+bi用点Z(a,b)表示.复平面内的点Z的坐标是(a,b),而不是(a,bi);,5.复数的两个几何意义:,7.复数的模通过向量的模来定义;,6.复平面内任意一点 Z(a,b)可以与以原点为起点,点 Z(a,b)为终点的向量 对应;,小结:,复数的几何意义是什么?,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义,比一比?,复数还有哪些特征能和平面向量类比?,

    注意事项

    本文(复数的几何意义(公开课).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开