欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    复合函数及抽象函数的单调性.ppt

    • 资源ID:5697132       资源大小:286KB        全文页数:21页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复合函数及抽象函数的单调性.ppt

    复合函数的单调性,复合函数的单调性,复合函数的单调性由两个函数共同决定;,引理1:已知函数y=fg(x),若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=fg(x)在区间(a,b)上是增函数。,证明:在区间(a,b)内任取两个数x1,x2,使ax1x2b,因为u=g(x)在区间(a,b)上是增函数,所以g(x1)g(x2),记u1=g(x1),u2=g(x2),即u1u2,且u1,u2(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)f(u2),即y=fg(x1)y=fg(x2),故函数y=fg(x)在区间(a,b)上是增函数。,复合函数的单调性,引理2:已知函数y=fg(x),若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=fg(x)在区间(a,b)上是增函数。,证明:在区间(a,b)内任取两个数x1,x2,使ag(x2),记u1=g(x1),u2=g(x2),即u1u2,且u1,u2(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)f(u2),即y=fg(x1)y=fg(x2),故函数y=fg(x)在区间(a,b)上是增函数。,复合函数的单调性,规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。“同增异减”,增函数,增函数,增函数,减函数,减函数,增函数,增函数,减函数,减函数,减函数,增函数,减函数,解:由1-9x20得:-1/3x1/3当-1/3x0,x增大时,1-9x2增大,f(x)减小当0 x1/3,x增大时,1-9x2减小,f(x)增大函数的单调区间是-1/3,0,0,1/3。,例2.已知f(x)=x2+2x+8,g(x)=f(2x 2),求g(x)的单调增区间,【讲解】很明显这是一个复合函数的单调性问题,所以应“分层剥离”为两个函数 t=x2+2 y=f(t)=t 2+2t+8,(1)x(-,-1 时,函数递增,且t1,而t(-,1 时,函数也递增,故(-,-1 是所求的一个单调增区间;,(2)x(-1,0时,函数递增,且t(1,2,而 t(1,2 时,函数递减,故(-1,0 是g(x)的单调减区间;,(3)x(0,1时,函数递减,且t(1,2,而 t(1,2,函数也递减,故(0,1是g(x)的单调增区间;,(4)x(1,+)时,函数递减,且t(,1)而t(,1)时,函数递增,故(1,+)是g(x)的单调减区间综上知,所求g(x)的增区间是,和,例2:设f(x)是定义在实数集R上的偶函数,且在区间(-,0上是增函数,又f(2a2+a+1)f(3a2-2a+1),试求a的取值范围。,问:设f(x)是定义在实数集R上的奇函数,且在区间(-,0)上是增函数,问在 区间(0,+)上f(x)是 增函数还是减函数?,(0a3),例1:设f(x)是定义在实数集R上的奇函数,且在区间(-,0)上是增函数,又f(2a2+a+1)f(3a2-2a+1),试求a的取值范围。,抽象函数,例4:,例6:已知,是定义在-1,1上的奇函数,,则有,(1)判断,(2)解不等式,在-1,1上的增减性,并证明你的结论;,解:(1),在-1,1上增。,证明:任取,则,故,在-1,1上增。,若,(2),在-1,1上增,,不等式的解集为,是定义在-1,1上的奇函数,,则有,在-1,1上的增减性,并证明你的结论;,若,例6:已知,(1)判断,复合函数的单调性小结,复合函数y=fg(x)的单调性可按下列步骤判断:(1)将复合函数分解成两个简单函数:y=f(u)与u=g(x)。其中y=f(u)又称为外层函数,u=g(x)称为内层函数;(2)确定函数的定义域;(3)分别确定分解成的两个函数的单调性;(4)若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=fg(x)为增函数;(5)若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=fg(x)为减函数。复合函数的单调性可概括为一句话:“同增异减”。,

    注意事项

    本文(复合函数及抽象函数的单调性.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开