欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    Assessing the Future PerformanceCharacteristics of IC Engines.ppt

    • 资源ID:5695137       资源大小:573.01KB        全文页数:18页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Assessing the Future PerformanceCharacteristics of IC Engines.ppt

    Assessing the Future PerformanceCharacteristics of IC Engines,06/01/03,Topics,Assessing the performance of future engine-in-vehicle combinations a.Approach and methodology b.Results and interpretationDiscussion of key issuesRanking the various options,06/01/03,Two MIT Analyses of Future Automotive Technologies,1.“On the Road in 2020:A life-cycle analysis of new automobile technologies,“M.A.Weiss,J.B.Heywood,E.M.Drake,A.Schafer,and F.AuYeung,MIT Energy Lab.Report,MIT EL 00-003,October 2000.http:/web.mit.edu/energylab/www/“Comparative Assessment of Fuel Cell Cars,”M.A.Weiss,J.B.Heywood,A.Schafer,and V.K.Natarajan,MIT Lab.For Energy and Env.Report,MIT LFEE 2003-001 RP,http:/lfee.mit.edu/publications.,06/01/03,2020 Study Objectives,Assess the relative performance of future light-duty vehicle technology and fuels,some 20 years from now.Focus on energy consumption,CO2 emissions,and cost.Do this on a“well to wheels”basis:energy source through vehicle use and scrappage.Assess the relative attractiveness of these technologies and fuels to all the major stakeholders.Focus on fuel,vehicle,and propulsion system technology of average U.S.car.,06/01/03,Study Approach,Fuels-Assess from available data energy consumption,emissions and costs in delivering fuel to vehicleVehicles-Use propulsion system,vehicle,drive cycle simulation to predicts performance-Evaluate a set of promising fuel,propulsion system and vehicle technology combinations-Match attributes of current average car(Toyota Camry)3.Total system-Combine fuel production,vehicle production,and vehicle use costs,energy consumption,CO2-Use templates(lists of relevant attributes)for all major stakeholders to assess likely impact,06/01/03,Technology Options,1.Evolving mainstream technologies Vehicle:better conventional materials(e.g.high strength steel),lower drag Engine:higher power/volume,improved efficiency,lighter weight Transmission:more gears,automatic/manual,continuously variable Fuels:cleaner gasoline and diesel2.Advanced technologies Vehicle:lightweight materials(e.g.aluminum,magnesium,lower drag Powertrain Hybrids(engine plus energy storage)Fuel cells(hydrogen fueled;liquid fueled with reformer)Fuel:gasoline,diesel,natural gas,alcohols,hydrogen,06/01/03,Gasoline Engine:Future Potential,Spread of recently introduced innovationsAdditional friction reduction opportunitiesSmart cooling systems for engine temperature controlCylinder cut out at lighter loadsVariable valve timing and lift at full and part loadHigher expansion ratio engines for increased efficiencyVariable compression ratioIndividual cylinder mixture and combustion controlEffective lean NOx catalystsGasoline direct-injection engine conceptsBoosted/turbocharged engine conceptsEngine plus battery hybrid systemsEtc.,06/01/03,Calculation logic:ICE battery electric parallel drivetrain,DrivingCycle,VehicleResistance,LogicControl,Transmissiion,ElectricMotor,CombustionEngine,Battery,FuelComsumption,06/01/03,IC Engine Model and Assumptions,1.IC engine indicated efficiency assumed constant:-Current,38%SI engine;48%diesel-Future,41%SI engine;52%diesel2.Engine friction assumed constant:-Current tfmep=165 kPa SIE;180 kPa diesel-Future 25%reduction,SIE;15%diesel3.Brake efficiency obtained from indicated efficiency and friction data.4.Maximum torque and power scaled by extrapolating historical trends(e.g.20%increase in max.power),06/01/03,Table 7.Overall Fuel Cell System Efficiencies,06/01/03,Fuel Cycle Energy Use and CO2,06/01/03,Costs of Fuels,Ex-Tax,in 2020,Gasoline,Diesel,CNG,F-T Diesel,Methanol,Hydrogen,Electric Power,Ex-Tax Cost of Delivered Fuel,S/GJ,Key Assumptions/Sensitivities,Crude Oil:$12-32/B,Crude Oil:$12-32/B,Piped Nat.Gas:$5.3 6.1/GJ,Remote Gas:$0 1/GJCapital Cost:$20-40k/B/D,Remote Gas:$0 1/GJCapital Cost:$65-105k/T/D,Piped Nat.Gas:$5.7/GJ,US Grid 5.1/kWhIncl.30%Off-Peak Reduction,06/01/03,FIGURE 1.RELATIVE CONSUMPTION OF ON-BOARD FUEL ENERGY,MJ(LHV)/km as percentage of baseline vehicle fuel use All other vehicles(except 2001“reference”)are advanced 2020 designs Driving cycle assumed is combined Federal cycles(55%urban,45%highway)Hatched areas for fuel cells show increase in energy use in integrated total system which requiresCompromises in performance of individual system components,2001 REFERENCE,2020 BASELINE,GASOLINE ICE,GASOLINE ICE HYBRID,DIESEL ICE,DIESEL ICE HYBRID,HYDROGEN FC,HYDROGEN FC HYBRID,GASOLINE FC,GASOLINE FC HYBRID,06/01/03,FIGURE 2.RELATIVE CONSUMPTION OF LIFE-CYCLE ENERGY,Total energy(LHV)from all sources consumed during vehicle lifetime Shown as percentage of baseline vehicle energy consumption Total energy includes vehicle operation and production of both vehicle and fuel,2001 REFERENCE,2020 BASELINE,GASOLINE ICE,GASOLINE ICE HYBRID,DIESEL ICE,DIESEL ICE HYBRID,HYDROGEN FC,HYDROGEN FC HYBRID,GASOLINE FC,GASOLINE FC HYBRID,06/01/03,Table 10.share of Life-Cycle Energy&GHG,Note:Percentages for FCs are averages for“Component”and“Integrated”systems.Neither system varies more than about 1%from average.See Tables 8&9.,06/01/03,Summary:Future Powertrain and Vehicle Technologies,1.Significant potential for improving gasoline-engine vehicle energy consumption through continuing evolutionary changes(1-2%per year).2.Diesel energy consumption benefit relative to equivalent gasoline technology is 15%,longer-term(add 11%for miles per gallon),but cost is significantly higher.3.Parallel ICE hybrid could provide about 30%lower energy consumption than non-hybrid equivalents in urban driving,at 20%increase in cost above baseline.4.Fuel-cell vehicle projections underline importance of fuel supply.Direct hydrogen-fueled fuel cell hybrid vehicle energy consumption could be about 30%better than that of an equivalent ICE hybrid.Adding the fuel cycle for hydrogen removes this potential benefit.,06/01/03,Lessons from On the Road in 2020,1.Key question:Selecting the appropriate baseline:Technology,vehicle,performance,drive cycle2.Must compare alternatives on“well-to-wheels”and“cradle-to-grave”basis.3.If hydrogen is the“fuel,”source of energy to produce the hydrogen is critical.4.Many methodology challenges:e.g.double counting of benefits,realism of projections,rate of ongoing technology developments.5.Costs will be critical.Costs for new technology alternatives are clearly speculative!,06/01/03,Time Scales for Significant U.S.Fleet Impact(see notes),05/07/04,

    注意事项

    本文(Assessing the Future PerformanceCharacteristics of IC Engines.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开