欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    向量几何应用.ppt

    • 资源ID:5693025       资源大小:339.99KB        全文页数:13页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    向量几何应用.ppt

    向量在平面几何中的应用,例如,向量数量积对应着几何中的长度.如图:平行四边行ABCD中,,设,则,向量 的夹角为 BAD.,例1.如图,已知平行四边形ABCD中,E、F在对角线BD上,并且BE=FD,求证AECF是平行四边形。,证明:由已知设,即边AE、FC平行且相等,AECF是平行四边形,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,例2.求证平行四边形对角线互相平分,证明:如图,已知平行四边形ABCD的两条对角线相交于M,设,则,根据平面向量基本定理知,这两个分解式是相同的,所以,解得,所以点M是AC、BD的中点,即两条对角线互相平分.,例3.已知正方形ABCD,P为对角线AC上任意一点,PEAB于点E,PFBC于点F,连接DP、EF,求证DP EF。,证明:选择正交基底,在这个基底下,设,所以,因此DPEF.,例4、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。求证:,解:设,则,分析:因为平行四边形对边平行且相等,故设 其它线段对应向量用它们表示。,向量与直线方向向量法向量,x,o,y,三、应用向量知识证明三线共点、三点共线,例3、已知:如图AD、BE、CF是ABC三条高求证:AD、BE、CF交于一点,H,由此可设,利用ADBC,BECA,对应向量垂直。,三、应用向量知识证明三线共点、三点共线,例4、如图已知ABC两边AB、AC的中点分别为M、N,在BN延长线上取点P,使NP=BN,在CM延长线上取点Q,使MQ=CM。求证:P、A、Q三点共线,解:设,则,由此可得,即 故有,且它们有公共点A,所以P、A、Q三点共线,四、应用向量知识证明等式、求值,例5、如图ABCD是正方形M是BC的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形面积为64,求AEM的面积,分析:如图建立坐标系,设E(e,0),M(8,4),N是AM的中点,故N(4,2),=(4,2)-(e,0)=(4-e,2),解得:e=5,故AEM的面积为10,

    注意事项

    本文(向量几何应用.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开