欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    科学备考讲究实效ppt课件.ppt

    • 资源ID:5667806       资源大小:1.82MB        全文页数:244页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    科学备考讲究实效ppt课件.ppt

    科学备考 讲究实效,特级教师 田名凤2011-3-4,讲座要点1.仔细研读考试大纲,掌握复习方向;2.潜心研习高考试题,掌握高考特点;3.认真研究认知结构,掌握复习节奏.,一、仔细研读考试大纲,掌握考试内容和要求,制定高考大纲依据全国的考试大纲,依据学生的实际情况;依据主管领导的要求;依据当年使用的教材。,既要高举旗帜,又要符合实际,2.有利于第三次命题的平稳过渡;全国-本地,旧教材-新教材,大纲卷-课标卷。3.保持优良传统,总体稳定,局部调整,稳中有进。试卷结构不变,知识要求的层次不变.,数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系.进而通过分类、梳理、综合,构建数学试卷的结构框架.,注重基础知识基本技能基本方法;确立以能力立意命题的指导思想;将知识能力素质的考查融为一体;考查考生进入高校再学习的潜能.全面检测考生的数学素养.,教学要求的层次知识,理解,应用,分析,综合,评价。,高考对数学知识的要求层次(1)了解:要求对所列知识有初步的、感性的认识,知道其内容,并能在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释,举例或变式、推断,并能利用知识解决有关问题.,(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.,1高考内容与高考要求,集合(集合的含义是A级,集合的表 示、集合关系、集合运算B级)简易逻辑(充要条件C级,四种命题的 关系、逻辑关联词、全称量词与 存在量词B级),函数的概念(映射A级,函数概念与表 示C级、反函数的概念A级)函数的性质(奇偶性B级,函数的最值C级、单调性C级),指数式运算(实数指数幂A级,有理指 数幂B级,幂运算C级,)对数式运算(对数的概念与运算B级、换底 公式A级),指数函数、对数函数、幂函数(指数函数的概念、图象与性质B级,对数函数的概念、图象与性质B级,幂函数概念A级,5种幂函数图象与性质 B级),函数模型与应用(零点、二分法A级,函数模型与应用B级),*函数综合问题(C级),三角式的定义(角的概念、弧度制A级,弧度制与角度制互化B级、三角式定义、三角函数线C级、诱导公式B级,同角关系式C级),三角函数(周期性定义、三角函数的周期性A级,y=sinx,y=cosx,y=tanx图象与性质C级 y=Asin(wx+)的图象C级,三角函数的应用B级),三角变换(正弦、余弦、正切的两角和与差公式、倍角公式C级,三角变换B级)解三角形(正弦定理、余弦定理、解三角形B级),数列(数列概念B级、等差数列概念、等比数列概念B级,等差数列、等比数列的通项公式C级、等差数列、等比数列求和公式C级),*数列的综合问题(C级),不等式(二元一次不等式组表示的区域B级、简单线性规划B级,基本不等式与应用C级,解一元二次不等式C级)*不等式的综合问题(C级),推理与证明(合情推理A级,归纳与类比、反证法、数学归纳法B级,演绎推理、综合法、分析法C级),平面向量(基本定理A级,向量概念、向量共线、向量坐标、数量积与夹角、向量的应用B级,向量的四种运算与坐标表示C级、两向量平行与垂直的判定C级),导数的概念与运算(导数的概念、用定义求导A级,导数的几何意义、复合求导B级,导数的四则运算C级)导数的应用(用导数解决实际问题B级,求单调区间、极值、最值C级)定积分(A级),*导数与函数的综合(C级),复数(复数概念与相等、复数的运算B级,复数的表示及几何意义、加减法的几何意义A级),立体几何初步(柱、锥、台、球及简单组合体,球、柱、锥体积及表面积A级,四个公理A级,三视图、直观图B级,直线、平面位置关系B级,线面平行的判定与性质C 级,线面垂直的判定与性质C级),空间向量(基本定理A级,空间直角坐标系、两点之间的距离,向量概念、向量坐标B级,向量的四种运算C级、向量平行与垂直的判定C级),空间向量的应用(直线的方向向量、平面的法向量B级,向量的四种运算、各种位置关系C级、各种空间角C级),直线方程(倾角与斜率B级、斜率公式C级、两直线交点、平行线之间的距离B级,两点距、点线距C级,直线的点斜式、两点式、一般式C级,两直线平行与垂直的判定C级),圆方程(两圆的位置关系B级,圆的标准式、一般式方程C级,直线与圆的位置关系C级),圆锥曲线(双曲线定义、标准方程、简单几何性质A级,椭圆的定义、标准方程、简单几何性质C级,抛物线的定义、标准方程、简单几何性质C 级,直线与圆锥曲线的位置关系C级,曲线与方程的对应关系B级),*解析几何的综合问题(C级),算法初步(算法含义、算法语句A级,程序框图的三种基本逻辑结构B级),排列组合(两个原理、排列组合的概念B级,排列数、组合数公式C级,排列组合的应用题C级)二项式定理(用定理解决与展开式有关的简单问题B级),统计(分层抽样、系统抽样A级,简单随机抽样B级、频率分布表、直方图、折线图、茎叶图、样品的数字特征,线性回归方程B级,用样本估计总体(分布、数字特征)C级),概率(随机事件的概率、超几何分布、条件 概率、事件的独立性、正态分布A级,随机事件的运算、古典概型、几何概型、n次独立重复试验B级、二项分布、期望与方差B级,互斥事件的概率加法公式C级、离散性随机变量的分布列C级),平面几何(平行截割定理A级,直角三角形的射影定理、圆周角定理、圆的切线判定与性质、圆内接四边形判定与性质、相交弦定理,切割线定理B级),极坐标(点的极坐标、极坐标与直角坐标 的互化B级)参数方程(椭圆的参数方程A级,直线的参数 方程、圆的参数方程B级),传统内容基本不变的有 平面向量、解三角形、数列、复数。,传统内容有变化的有:三角函数中删去余切、正割、余割,反三角函数的符号;不等式中删去高次不等式、含绝对值的不等式,削弱不等式的证明。二项式定理中删去两个组合数的性质。,解析几何中删去两直线夹角,删去椭圆、双曲线的第二定义和准线。导数中删去极限的运算。立体几何删去三垂线定理,球面距离。,新增3大单元:算法、程序框图、基本算法语句;算法案例;推理与证明:合情推理与演绎推理,数学归纳法、分析法、综合法、反证法;统计案例。,新增11小点:无理指数幂,幂函数,对数换底公式,零点,二分法,任意与存在,定积分,三视图,茎叶图,几何概率,条件概率。,2高考对数学能力的要求,考试大纲对能力的要求分两个层次:基本能力(空间想象能力,抽象概括能力,推理论证能力,运算能力,数据处理能力)与发展能力(应用意识和创新能力)。,空间想象能力:空间想象能力是对空间形式的观察、分析、抽象和处理的能力,主要表现为识图、画图和对图形的想象.要求能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换,会运用图形形象地揭示问题的本质.,抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的.抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或做出新的判断.对抽象概括能力和推理论证能力的考查贯穿于全卷,是重点.,推理论证能力:推理是数学思维的基本形式,它由前提和结论两部分组成.推理贯穿于学习解题的始终.论证是由已有的正确的前提到被论证的结论的正确性的一连串的过程.推理既包括合情推理,也包括演绎推理.论证方法既包括按形式划分的归纳法和演绎法,也包括按思考方法划分的直接证法和间接证法.一般说来,运用合情推理发现结论,再运用演绎推理进行证明,可以形成一个完整的思维程序.,运算求解能力:运算能力是数学的基本能力.高考试题中,半数以上需要运算求解,有的证明问题也需借助于运算进行推理.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等.运算能力表现为:会根据法则、公式进行正确的运算和变形;能根据问题的条件,寻找与设计合理、简捷的运算途径.也包括在实施运算中遇到障碍而调整运算的能力。,数据处理能力:数据处理能力主要表现为:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.,应用意识:数学高考对应用意识的考查主要采用应用问题的形式,主要过程是依据现实的生活背景、提炼相关的数量关系,将实际问题转化为数学问题,构造数学模型,并加以解决。要求考生能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;应用相关的数学方法解决问题并加以验证,能用数学语言正确地表达和说明.,创新意识:考试中创设新颖的问题情境,构造有一定深度和广度的数学问题;注重问题的多样化,体现思维的发散性;设计反映数、形运动变化的试题,探究型和开放型的试题.要求通过“观察、猜测、抽象、概括、推理、证明”等思维程序,发现问题、提出问题,并综合与灵活运用数学知识和思想方法,选择有效的途径和方法,独立思考,探索研究,寻找解决问题的思路,并创造性地解决问题.,个性品质要求 具有一定的数学视野,崇尚数学的理性精神.形成审慎思维的习惯,实事求是的科学态度,体现锲而不舍的精神.,3高考对数学思想和方法的要求,数学思想方法蕴含在数学基础知识之中,它与数学知识的发展形成同步,是数学知识的精髓,是知识化为能力的催化剂。,函数与方程的思想;数形结合的思想;分类讨论的思想;转化与划归的思想。,考查数学思想方法是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想和方法的理解;注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.,如,二、潜心研习高考试题,掌握试题特点与热点。,1基础与重点同行,思想与方法并重,2010年试题一方面试题对高中数学各章所涉及的内容作了较为全面的考查,知识点的覆盖率高,另一方面试题又突出考查了重点知识,使每章节的数学知识得以纵向发展,使不同章节的知识之间相互交汇。数学思想方法蕴含在数学知识当中,它与数学知识的发展形成同步.它是数学知识的精髓,高考在考查数学知识的同时也对数学思想方法进行了全面的考查。,以海南、宁夏理科卷为例,(1)题考查了解简单的绝对值不等式、根 式不等式同时考查了集合的基本运算;(2)题考查了复数的概念与运算;(3)题考查曲线切线的求解能力,考查导数 几何意义的应用;(4)题考查用函数图象描述运动,体现用函 数思想求解问题的能力;,(5)题以函数性质为载体考查简易逻辑 中命题真伪的判断能力;(6)题考查二项分布、数学期望等的概 率与统计的相关知识;(7)题考查程序框图与数列知识;(8)题以三次函数为背景考查函数与不 等式的综合,检查考生数形结合的 思想与方法;,(9)题是利用倍角公式解决三角式的半角求 值问题,要求考生有较好的转化技巧;(10)是三棱柱与球的结合问题,它需要把 空间图形转化为平面图形进行求解;(11)题是分段函数、方程、不等式的综合 问题;(12)题是解析几何中的双曲线问题,考查 学生用方程处理问题的策略。,(13)题是积分与统计相结合的试题,考 查学生用概率与统计的思想处理实际 问题的能力;(14)题考查三视图,带有立体几何知识 探索的味道;(15)题考查直线与圆,充分体现用代数 方法研究平面几何问题;,(16)题是三角形中的计算问题,他把三角 问题与解析几何问题有机的进行结合;(17)题是数列问题.此题涉及数列的递推关 系、通项公式、求和问题,此题把非常 规的数列经过加工转化为等比数列问题;,(18)题是一道立体几何试题.它在锥体中考 查学生对空间几何关系的判断与度量,需要借用空间向量.解决垂直的证明与夹 角的计算.;(19)题是一道应用问题,涉及到数据处 理、独立性检验,考查学生是运用统计 知识解决实际问题的能力;,(20)题是解析几何大题,涉及到数列知 识、椭圆定义、椭圆方程、椭圆性 质、直线与圆锥曲线的关系等知识,考查学生的思维能力与计算能力;(21)题是导数、函数、不等式的综合试 题,用到分类讨论的思想方法;,(22)题平面几何试题;(23)题是参数方程的试题;(24)题是不等式问题;(第(22)(23)(24)题三题任选 其一)。,2深化能力立意,重视应用创新,例1 f(x)是定义在-c,c上的奇函 数,如图,令g(x)=af(x)+b,下 列叙述正确的是(A)若a0,则g(x)图象关于原点对称.(B)若a=-1,-2b0,方程g(x)=0有大于2 的实根.(C)若a0,b=2,方程g(x)=0有两个实根.(D)若a1,b2,方程g(x)=0有三个实根.,图中信息,B,(A)若a0,则g(x)图象关于原点对称.(B)若a=-1,-2b0,方程g(x)=0有大于2的实根.(C)若a0,b=2,方程g(x)=0有两个实根.(D)若a1,b2,方程g(x)=0有三个实根.,操作确认,例2(2008江苏13),的最大值为_,三角、几何、解析几何结合,联系与转化,字母运算,B,数形结合,例4(宁夏、海南卷)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1、h2、h 3,则h1h2h3=A 11 B 22 C 2 D 2,图形的分解与组合,例5(山东卷)在等腰梯形ABCD 中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥PDCE的外接球体积为,A.,B.,C.,D.,空间想象,例6(北京卷)动点P在正方体ABCDA1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N.设,则函数y=,的图象大致是,立体几何与解析几何结合,B,若目标函数z=ax+by(a0,b0)的值是最大值为12,则,例7(2009山东卷理)设x,y满足约束条件,的最小值为().,B.,C.,D.4,A.,数与形的相互转化,不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a0,b0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6,而,=,选A.,例8(全国卷)双曲线中心为原点O,焦点在x轴上,两渐近线分别为,过右焦点F垂直于l1的直线分别交 于 A、B两点.已知,成等差数列,,与 同向.,(1)求双曲线的离心率;(2)设AB被双曲线所截得的线段的长为4,求双曲线方程.,综合性强,有一定计算量。,由于 等差,和勾股定理,得OA,AB,OB的比3:4:5,A,B,O,F,概率统计与应用结合,三认真研究学生认知,掌握复习节奏与层次。,重点知识复习与综合训练相结合;全员分析讲解与个别指导相结合;解题规律研究与查缺补漏相结合。,第二阶段复习建议,教师了解学生,学生理解教师,教师抓紧学生,学生跟紧教师。,1夯实学生会的,力争学生能的。,关注学生的薄弱点,强化学生的得分点,鼓励学生创新意识,锻炼学生实践能力,养成学生反思习惯。,1.注意定义域问题 奇偶性,单调区间,最值,函数式的变形,函数复合,用导数研究函数,实际问题。,2.图象变换要慎重。,如:与函数相关问题中的易错点,3.注意求导问题求导公式,求导法则,复合求导,,4.关注解含参数的不等式一元一次不等式,一元二次不等式,不等式组。,得分点,1.函数性质的联系与发展;2.用函数图象分析问题;3.方程、不等式、函数的有机结合。,小题身上抓准抓熟集合与简易逻辑;函数概念与性质;函数图象与图象变换;导数计算与导数应用;不等关系与不等式的应用;,三角变换与三角函数;平面向量与三角形求解;数列的通项与求和;空间向量与几何关系计算;复数概念与计算;,排列组合与二项式定理;概率计算与统计初步;直线方程与圆方程;圆锥曲线定义与几何性质;,例1 过原点求y=ex的切线,,过原点求y=lnx的切线。,例2 函数f(x)的图象如图,数列an满足 an+1=f(an),已知an+1an,(0a11)则f(x)的图象为(),例3(江西卷)若不等式x2ax10对于一切x(0,0.5)成立,则a的取值范围是(),大题身上抓思路抓表述三角问题,函数问题,解不等式;数列问题;立体几何;概率问题;导数应用;解析几何;代数综合。,例1,例2:抛物线C:y2=4x,F是C的焦点,过F的直线L 与C交于A,B两点,(1)设L的斜率为1,求向量OA,OB的夹角的余弦;求直线L的纵截距的取 值范围。,解(1),直线L的方程,直线L的纵截距,由于,解2,解得,2.重点章节的再复习的建议,集合问题,集合A是集合B的子集,集合A与集合B的相等,集合语言,函数的定义域,函数的值域,函数的图象,不等式的解集,绝对不等式,方程有解,两直线平行,例1 定义 则M-(M-N)为,(A)M(B)N(C)MN(D),例2 集合M是方程为2kx+9y-k2=0的直线的集合,集合S是满足下列条件的集合:对于集合S中的每一个点,在集合M中有且只有一条通过该点的直线,求集合S中的点的轨迹方程。,分析:2kx+9y-k2=0对于k只有一解,等价于4x2+36y=0,11,例4 已知M=f(x)|f(x)满足f(x+T)=Tf(x),(1)函数f(x)=x是否属于M?请说明理由。(2)设函数f(x)=ax与直线y=x有公共点,求证f(x)=ax属于M.(3)若f(x)=sinkx属于M,求k的取值范围.,对函数性质的理解,注意联系与发展:奇偶性与对称性;对称性与周期性;单调性与凹凸性。,f(-x)=f(x),f(0-x)=f(0+x),f(t-x)=f(t+x),f(t1-x)=f(t2+x),f(-x)=-f(x),f(0-x)=-f(0+x),f(t-x)=-f(t+x),f(t1-x)=-f(t2+x),轴对称,中心对称,奇偶性与对称性,f(x+T)=f(x),f(t1+x)=f(t2+x),周期性,f(x+t)=-f(x),如果一个函数具备两个对称性,则这个函数必定是周期函数。,对称性与周期性,如果一个周期函数有一条对称轴(或中心),那么这个函数就有无数条对称轴(或中心)。,例如:若f(a+x)=f(a-x),f(b+x)=f(b-x),(ab),则,f(x+2a-2b)=fa+(x+a-2b)(恒等变形)=fa-(x+a-2b)f(a+x)=f(a-x)=f(-x+2b)(恒等变形)=fb+(-x+b)(恒等变形)=fb-(-x+b)f(b+x)=f(b-x)=f(x),T=2a-2b,又如:若f(a+x)=-f(a-x),f(b+x)=-f(b-x),则,f(x+2a-2b)=f(x),T=2a-2b,又如:若f(a+x)=-f(a-x),f(b+x)=f(b-x),则,f(x+2a-2b)=-f(x),2a-2b为半周期,单调性,任取x1,x2D,且x1x2,若x1x2 时,有y1y2,则称y=f(x)在D上为增函数;,任取x1,x2D,若 则称y=f(x)在D上为增函数;,若函数f(x)的导函数 在D上的函数值为正,则称y=f(x)在D上为增函数;,单调性与凹凸性,凹凸性,例1 在R上定义的函数f(x)是偶函数,且 f(x)=f(2-x).若f(x)在区间(1,2)上是减函数,则f(x)()A.在(-2,-1)上是增函数,在(3,4)上是增函数B.在(-2,-1)上是增函数,在(3,4)上是减函数C.在(-2,-1)上是减函数,在(3,4)上是增函数D.在(-2,-1)上是减函数,在(3,4)上是减函数,在(-2,-1)上是增函数,在(3,4)上是减函数,例2(2005广东卷第19题,满分14分)设函数f(x)在 上满足,f(2-X)=f(2+X),f(7-X)=f(7+X)且在f(x)闭区间0,7上,只 有f(1)=f(3)=0()试判断函数f(x)的奇偶性;()试求方程f(x)=0在闭区间-2005,2005上的根的个数,并证明你的结论,由已知可判断函数的周期为10,,共802个根.,方程、不等式与函数的综合,方程与不等式相结合;函数与不等式相结合;函数、方程、不等式与数列相结合;不等式、函数与导数相结合;,解不等式,函数的最值,解关于x的不等式解关于c的不等式,求函数的最值,拆分变量,主元处理,例1,拆分结论,关于含参不等式的讨论,使用“乘正保序,乘负反序”时,正负不定引起讨论;在数轴上标根取解集时,根的大小不定引起讨论;利用函数的单调性时,函数的增减性不定引起讨论;借用方程的根表示不等式解集端点时,根的表达式 的有无意义不定引起讨论。,关于数列问题,例1 等差数列an的前n项和的满足(1)S8=S13,求Sn=0时的n.(2)a10,S13 S140,求Sn取最大值时的n.,21,7,例2 根据数列的通项公式求数列中最 大的项号.,例3 已知函数f(x)满足对任意的实数m,k都 有f(m+k)=f(m)+f(k)成立,f(1)=2,求f(1)+f(2)+f(n).,例4 已知首项与公比都是正数a(a1)的等比数列 an,bn=anlgan,若数列bn的每一项都小于 它后面的项,求a的取值范围。,解 an=an,bn=anlgan=anlg an=n anlga,nanlga(n+1)an+1lga,当a1时,n(n+1)a,a1,当0(n+1)a,0a0.5,例5,(1)用平均值定理,(2)用比较法,(3)利用解方程的方法,例6 数列发生器 对任意函数f(x),xD,可按图示构造一个数列 发生器,其工作原理如下:输入数据x0D,经数列发生器输出x1=f(x0),若x1 D,则数列发生器结束工作;若x1D,则x1返回输入端,再输出x2=f(x1),将依此规律继续下去.,现定义.(1)若 x0=,则由数列发生器产生数列xn,请写出数列xn的所有项;(2)若数列发生器产生一个无穷的常数列,试输入初始值x0 的值;(3)若输入x0时,产生的无穷数列xn,满足 xn xn+1对任意正整数n成立,求x0 的取值范围.答案。,函数与导数相结合,导数是研究函数的工具,在研究单调性,极值和最值方面十分方便。,关注 两图象的关系,例1 设 则a,b,c 的大小关系为 _.,ebc,ec;,例2 设 则()(A)abc,(B)cba(C)cab(D)bac,C,例2 设 则a,b,c 的大小关系为 _.,ebc,例3 设f(x),g(x)是分别定义在R上的奇函数和偶 函数,当x0时,则不等式f(x)g(x)0的解集为 _.,设F(x)=f(x)g(x),由已知,练习 设f(x),g(x)是分别定义在R上的奇函数和偶 函数,当x0时,则 的解集为 _.,例4 已知二次函数 满足:在x=1时有极值;图像过(0.-3)点,且在该点处的切线与直线 2x+y=0平行。(1)求 的解析式;(2)求函数 的值域;(3)若曲线 上任意两点的连线 的斜率恒大于,求a的取值范围。,排列与概率,,如插空问题可相邻插空,空越插越多,不相邻插空,空越插越少;插入的元素有区别时,要逐一插入,插入的元素无区别时,要一把插入。,例1 某人射击,10发子弹中有4发击中目标,问其中有3法连中的概率有多大?,用O表示没被击中,用X表示击中 我们分别用4个X去插O的空当,O O O O O O 得(78910)24=210,我们再用XXX和X去插O的空当,得(76)=42.所求概率为0.2.,例2 某城市要在中心广场建一个扇形花圃,现在要栽种 4 种不同颜色的花,每一部分栽一种,要求相邻部分不同色,有多少种不同的种法?,先考虑在1区内栽种有4 种方法,再依次考虑2、3、4、5、6 区的栽种方法。,430120,画树图 当1区选中后,2区有三种选色方法。,例 3(2006年江苏卷)下图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是_.,0-1-11-41-4-2-21-31-3-5-51-01,例4 盒子内有7个红球3个白球,一次 抽取一个球,分别计算下列概率。(1)有放回的抽取,第二次抽到的是红球;(2)无放回的抽取,第二次抽到的是红球;(3)有放回的抽取,抽两次都是红球;(4)无放回的抽取,抽两次都是红球;(5)无放回的抽取,在第一次是红球时,求第二次是红球的概率。,例5 某人射击命中率为p,依条件分别写 出X的分布列(1)射击10次击中X发;(2)射击时第X发首次击中;(3)射击时击中则停,共10发子弹,第X 次射击后停止。,概率与统计,例1一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖,求分别获得1,2,3等奖的概率,例2(09浙江14),例6 3天津18),例4(09辽宁19)某人向一目射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.()设X表示目标被击中的次数,求X的分布列;()若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A),设Ai表示事件“第一次击中目标时,击中第i部分”,i=1,2.Bi表示事件“第二次击中目标时,击中第i部分”,i=1,2.,向量作为一项工具将广泛应用于高中各个学科当中.特别是与解析几何、函数、立体几何的有机结合将成为一种趋势,向量将不再停留在问题的表述语言水平上,其综合性程度将会逐渐增强.向量和平面几何结合的选择填空题将是高考命题的一个亮点.,向量部分,向量自身综合向量的概念与向量的运算的综合,向量的代数意义与几何意义的综合。,向量与相关知识的综合 向量问题与平面几何问题综合;向量问题与解析几何问题的结合;向量问题与立体几何问题综合;向量问题与物理问题的结合.,三角形的心,(5)O是坐标平面的一定点,A、B、C是平面上不共线的三个点,动点P满足,则P的轨迹一定通过三角形的(A)外心(B)内心(C)重心(D)垂心,A,B,C,P,单位向量,向量加法,平行四边形,菱形对角线平分对角,通过内心,解析几何的复习,直线与圆部分常考:定比分点,倾角与斜率,切线与导数,平行与垂直,距离与夹角,线性规划。对称问题,直线与圆的位置关系。圆锥曲线部分常考:圆锥曲线的定义与性质,求曲线方程和轨迹,直线与圆锥曲线综合,研究曲线方程中的参数的取值范围。,综合性强:向量与解析几何的综合,代数、几何、三角等的综合。数学思想与方法集中:方程的思想,运动变化的思想,数形结合的思想,转化的思想,坐标法,参数法等。,如:对椭圆上的点的认识:椭圆上的点满足椭圆的第一定义;椭圆上的点满足椭圆的普通方程;椭圆上的点满足椭圆的参数方程。,深化数学概念,O,A,P,B,另如,对角平分线的认识,等量关系:等、倍、分;轨迹条件:到角两边距离相等的点的轨迹;对称性质:角平分线是角两边的对称轴;比例关系:三角形内角平分线分对边的比 等于两邻边之比。,四个例子,(1),求两直线交角平分线的方程,(3),求OM斜率的解析式,(4),求BC边所在直线的方程。,求曲线方程问题 代入法;待定系数法;轨迹法。,剖析典型问题,解1,C,A,B,先求C点,再求A、B,最后待定系数法求方程。,解2,轨迹问题直接法(直接用定义、直译轨迹条件)间接法(通过参数找关系),F,例3 两个同心圆,求以大圆的切线为准线且经过A,B的抛物线的焦点的轨迹,A,B,O,例4 已知椭圆 和直线l:,P在直 线l上,射线OP交椭圆于R,点Q在射线OP上,且 满足|OP|OQ|=|OR|2,求Q点的轨迹方程。,方案1,再利用|OP|OQ|=|OR|2和y=kx即可。,方案2 设 Q(x,y),P(m,n)R(a,b),依题意有,消去m,n,a,b即可,方案3 利用Q,R,P坐标之间的等比关系。,设 Q(x,y),则 R(xt,yt),P(xt2,yt2),两式相除,消去t2 即可。,直线与圆锥曲线的综合,交点个数与位置关系;弦长与弦中点、弦分点问题;弦所在直线的斜率问题,与圆锥曲线有多边形问题,例5 探究过一点作与双曲线只有一个公共点的直线的条数。,D,C,B,O,例6 已知l1、l2是经过点 的两条互相垂直的直线,并且l1、l2与双曲线y2x2=1 各有两个公共点,求l1的斜率k1的取值范围。,如何解决弦分点问题,A,B,p,如:求m的取值范围。(1)直接找到f(m)0,求解即可;(2)找f(m,n)=0和n的范围,用n的范围 反限制m;(3)找f(m,n)=0和g(m,n)0,从等式中 解出n,再代入不等式中即可。,关于参数的取值范围问题,例1:抛物线C:y2=4x,F是C的焦点,过F的直线L 与C交于A,B两点,求直线L的纵截距的取值范围。,解1,直线L的方程,直线L的纵截距,由于,解2,解得,立体几何问题,考察的重点及难点稳定;试题的题型、题量、难度基本稳定。平行与垂直,夹角与距离,面积与体积。,平行关系的转化,同级之间的转化(平行传递);低级向高级的转化(平行判定);高级向低级的转化(平行性质);垂直向平行的转化(外部联系)。,用向量描述平行关系,垂直关系的转化,线线垂直线面垂直面面垂直;线线垂直线面垂直面面垂直;平行加垂直 垂直;三垂线定理.,用向量描述垂直关系,空间几何体中抓好棱柱中的平行关系,直棱柱中的平行与垂直;长方体的体对角线;正棱锥中的基本关系,棱锥中的比例问题;球体中的计算问题.,请关注轨迹问题与立体几何结合。,P,A,B,C,E,F,PA ABPA ACBC ABAE PBAF PC,例1,例3 直三棱柱ABC-A1B1C1中,ACB是直角,AA1=2,D,E分别为所在线段的中点,E在平面ABD上的射影是三角形ABD的重心G.求A1B与平面ABD 的夹角;(2)求 A1到平面AED 的距离。,F,(2)利用体积,反求高,提示与分析,求点到平面的距离,直接求,转化求,体积求,向量求,例 正四棱锥的相邻两侧面所成角的范围(),答案 D,图形中的一些基本常识,谢谢,谢谢,

    注意事项

    本文(科学备考讲究实效ppt课件.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开