欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    第六章SPSS方差分析.ppt

    • 资源ID:5667376       资源大小:323.01KB        全文页数:34页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第六章SPSS方差分析.ppt

    第六章 方差分析,方差分析概述,一、问题的提出最优方案的设计如何获得最佳的产品销售量哪些因素是影响销售量的主要因素哪些因素的那种情况更利于提高销售量哪些因素的组合更利于提高销售量可以利用方差分析的方法来实现,方差分析概述,二、方差分析目的:方差分析从分析数据的差异入手,分析哪些因素是影响数据差异的众多因素中的主要因素.相关概念:(1)观测变量:作为观测的对象(如:亩产量、推销量等).(2)控制因素:人为可以控制的因素(如:施肥量、品种、推销策略、价格、包装方式等),在方差分析中称为控制因素.将控制变量的不同情况称为控制变量的不同水平.(3)随机因素:人为很难控制的因素(如:气候、推销人员的形象、抽样误差等),方差分析中主要指抽样误差。,方差分析概述,控制因素,观测变量,三个水平,方差分析概述,三、核心问题从数据差异角度看:观测变量的数据差异=控制因素造成+随机因素造成当控制因素对实验结果有显著影响时,和随机因素共同作用必然使观测变量产生显著变动;反之,观测变量的变动较小,将归结为随机性造成的(这里指抽样误差造成的).,方差分析概述,观察以下三组数据:500 500 500 10公斤600 600 600 15公斤700 700 700 20公斤501 502 503 10公斤 608 510 521 10公斤503 501 502 15公斤 510 601 524 15公斤502 503 501 20公斤 604 501 530 20公斤,方差分析正是要分析观测变量的变动主要是由控制因素机造成的还是由随机因素造成的,以及控制变量的各个水平是如何对观测变量造成影响的.,方差分析概述,四、方差分析的类型 单因素方差分析:只考虑一个控制因素的影响多因素方差分析:考虑两个以上的控制因素和它们的交互作用对观测变量的影响协方差分析:在尽量排除其他因素的影响下,分析单个或多个控制因素对观测变量的影响.(引入协变量),单因素方差分析,(一)目的检验某一个控制因素的改变是否会给观察变量带来显著影响.例如:应用面很广(科学试验,社会经济问题)考察不同肥料对某农作物亩产量是否有显著差异.考察不同温度下某化工产品的获得率考察妇女生育率在不同地区是否有显著差异.考察不同学历是否对工资收入产生显著影响.,单因素方差分析,(二)基本思路(1)入手点:检验控制变量的不同水平下,各总体的分布是否存在显著差异,进而判断控制变量是否对观测变量产生了显著影响.(2)前提:不同水平下各总体服从方差相等的正态分布.(3)H0:不同水平下,各总体均值无显著差异.即:不同水平下控制因素的影响不显著.,单因素方差分析,(二)基本思路(4)构造F统计量因为:总变差=组间差异+组内差异可证明:SST=SSA+SSE(设:k个水平,每个水平有ni个数据)考察平均的组间差异与平均的组内差异的比值,于是:,F(k-1,n-k),单因素方差分析,(二)基本思路(5)结论:F值较大,F值的概率p值小于或等于用户给定的显著性水平a,则拒绝H0,认为不同水平下各总体均值有显著差异;F值较小,F值的概率p值大于用户给定的显著性水平a,则不能拒绝H0,可以认为不同水平下各总体均值无显著差异.,单因素方差分析,(三)数学模型设控制变量A有k个水平,每个水平均有ni个数据,在水平Ai下第j个数据xij可以分解为:xij=i+iji为水平Ai下的理论指标值,ij为误差,服从正态分布(0,2),i为水平Ai对试验结果产生的影响,称为水平Ai的效应。如果A对观测变量没有影响,则各水平的效应全为0,否则不全为0。于是有:H0:1=2=3=k=0,单因素方差分析,(四)基本操作步骤(1)菜单选项:analyze-compare means-one-way ANOVA(2)选择一个或多个变量作为观察变量到dependent list 框(3)选择一个变量作为控制变量到factor框(4)option中的statistics项:descriptive:输出观察变量不同水平下的描述统计量,单因素方差分析,(五)进一步的分析前提的检验:各水平下方差齐性检验实现方法:option中的statistics:Homogeneity-of-variance,检验各水平下各总体方差是否齐性.H0:各水平下各总体方差无显著差异.,单因素方差分析中的多重比较,(一)目的 如果各总体均值存在差异,F检验不能说明哪个水平造成了观察变量的显著差异.多重比较将对每个水平的均值逐对进行比较检验.(二)几种常用的多重比较方法LSD(Least significant Difference)最小显著性差异法T(Tukey)方法,单因素方差分析中的多重比较,(二)几种常用的多重比较方法LSD(Least significant Difference)最小显著性差异法特点:利用了全部样本数据,而不仅是所比较的两组的数据,且认为各水平均是等方差的与其他方法相比,其检验敏感度最高在一定程度上克服了放大犯一类错误的问题,单因素方差分析中的多重比较,(二)几种常用的多重比较方法T(Tukey)法特点:利用了全部样本数据,而不仅是所比较的两组的数据,且认为各水平均是等方差的q分布平缓些,克服了扩大犯错的可能性,但不如LSD方法敏感适合各水平下样本数均相同的情况(三)实现方式 post hoc选项,单因素方差分析中的先验对比,(一)目的先凭经验确定各水平均值之间的对比系数,然后判定这两组均值的线性组合是否存在显著差异.如:1/3(k1+k2+k3)=1/2(k4+k5)H0:两组均值的线性组合无显著差异.(二)实现方式 Contrasts选项,在Coefficients框中输入每个水平均值的系数值和正负符号.注意:输入系数的顺序与控制变量水平值的升序一一对应系数的和为0,单因素方差分析中的趋势检验,(一)目的 将组间平方和分解成线性、二次、三次或更高次的多项式,检验观测变量是否随控制变量呈不同次幂变化。(二)实现方式 Contrasts选项,polynomial框,多因素方差分析,(一)目的 测试若干个控制因素的不同水平的交叉变化是否给观察变量带来了显著影响.例如:,多因素方差分析,(二)基本思路认为观测变量的变动是由各控制变量独立作用、它们的交互作用、以及随机因素造成的。以两个控制变量的方差分析为例:SST=SSA+SSB+SSAB+SSE(main effects)(N-way 交互)(Residual)(explained)其中:SAB表示两个控制变量交互影响带来的变差,多因素方差分析,(二)基本思路SST=SSA+SSB+SSAB+SSEA有p个水平,B有q个水平,每组有r个样本,多因素方差分析,(二)基本思路检验方法统计量(F检验)固定效应模型:,多因素方差分析,(二)基本思路结论依次查看各F值的概率p值.如果其相伴概率大于a,则不能拒绝H0,可以认为相应不同水平的控制变量或交互影响没有造成均值的显著差异;相反,多因素方差分析,(三)说明多因素方差分析中因素的划分固定效应因素:人为能够准确控制其各个不同的水平值;如:施肥量、品种、温度。-固定效应模型随机效应因素:人为无法对其水平值进行准确控制,只是能够直观观测到。如:城市规模、教育水平等。-随机效应模型-混合效应模型固定效应和随机效应通常较难区分,多因素方差分析,(三)说明交互作用,即:两个或多个控制变量各水平之间搭配时对观察变量的影响.交互作用的理解举例:饮食习惯、适量运动对减肥的作用;排球对的二传手和主攻手对赢球的作用交互作用的图形观察:A1 A2 A1 A2B1 2 5 B1 2 5 B2 7 10 B2 7 3当A从A1变化到A2时,A对观测变量值的影响与B取什么观测变量值均增加且幅度相同,水平有关与B1或B2无关;同理B,多因素方差分析,(三)说明多因素方差分析的核心内容:检验在不同控制变量的不同交叉水平下,各交叉分组下样本数据所来自的总体均值,有无显著差异。进而判断多个因素是否对观测变量产生了显著影响,但等方差一般不再非常强调H0:各交叉水平下的总体均值均无显著差异.数学模型:以双因素为例H0:ai=0;bi=0;(ab)ij=0,多因素方差分析,(四)基本操作步骤A.菜单选项:analyze-General Linear model-UnivariateB.选择观察变量到dependent框C.选择固定效应因素fix factor框D.选择随机效应因素random factor框E.模型的定义Model选项(饱和模型和非饱和模型),多因素方差分析,(五)进一步分析:Contrast:单样本均值检验,检验值为:deviation:观测变量的均值Simple:第一(最后)个水平的观测变量均值Difference:前一水平的观测变量的均值Helmert:后一水平的观测变量的均值,协方差分析,(一)目的 将无法或很难控制的因素作为协变量,在排除协变量影响的条件下更精确地分析控制变量对观察变量的影响.例如:,协方差分析,(二)基本思路观测变量总变差:协变量、控制变量、交互作用、随机因素H0:协变量对观测变量没有显著影响;在剔除协变量影响的条件下,各交叉分组下的总体均值无显著差异.单因素协方差分析的数学模型,协方差分析,(二)基本思路对协变量的要求协变量是数值型的;协变量与观测变量的线性关系在各水平均成立,且斜率大致相同协方差分析是界于方差分析和回归分析之间的一种分析方法定距型变量、品质变量,协方差分析,(二)基本思路检验统计量:F=MSA/MSE F=MSB/MSE F=MSAB/MSE F=MSZ/MSE结论:依次查看各F值的相伴概率.如果其相伴概率大于a,则不能拒绝H0,认为相应不同水平的控制变量或交互影响或协变量没有给观测变量带来显著影响反之,协方差分析,(三)基本步骤同多因素方差分析,并指定协变量到Covariates框中(Covariate等价于回归分析中的接收自变量的框),

    注意事项

    本文(第六章SPSS方差分析.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开