【教学课件】第四章生产理论.ppt
1,第四章 生产理论,本章分析决定供给的生产者行为 生产者称为厂商(Firm),是指能作出统一生产决策的经济单位。包括个人、合伙和公司性质的经营组织形式。厂商被假定为是合乎理性的经济人,提供产品的目的在于追求最大的利润。在生产者行为的分析中,假定厂商以利润最大化为目标。厂商为了追求最大利润,总是尽可能使生产特定产量所支出的成本为最小,或使消耗一定量成本所生产的产量为最大。最大利润原则支配着厂商的行为,预期利润的多少决定着商品的生产量或供给量。要实现利润最大化,可从两方面考察:从实物角度考察投入的生产要素与产量之间的物质技术关系,构成了生产理论;从价格、货币角度考察投入的成本与销售收益之间的经济关系,构成了成本理论。,2,第四章 生产理论,一、教学目的和要求本章的生产论和下一章的成本论将分析供给曲线背后的生产者行为,并从对生产者行为的分析中推导出供给曲线。因而,生产论和成本论通常也被合称为生产者行为理论。本章的学习,掌握短期生产函数和长期生产函数。,3,第四章 生产理论,二、教学的重点和难点1.理解生产函数的概念2.经济学中的长期与短期3.总产量、平均产量和边际产量的关系4.边际报酬递减规律5.一种生产要素合理投入的数量界限6.等产量线有哪些重要性质7.多种投入要素的最优组合是怎样确定的8.企业规模扩大情况下生产函数的特征9.规模报酬递增的原因,4,第四章 生产理论,三、教学的基本内容 生产理论研究的是企业行为。在生产理论中,企业被假定为是具有完全理性的经济人,其生产目的是实现利润最大化。考察企业行为正是围绕企业如何实现利润最大化这一中心进行的。研究企业如何实现利润最大化涉及到三个问题:一是投入的生产要素与产量之间的关系,即在企业内部实行有限资源的配置效率;二是生产中使用的成本与收益之间的经济关系;三是企业在不同的市场条件下,应该如何确定自己的产量和价格。以上三个问题分三章介绍。本章把企业的生产活动抽象为生产函数这种形式,在此基础上研究企业要实现利润最大化如何使自己的有限资源得到有效配置。,5,第四章 生产理论,第一节 生产函数第二节 短期生产函数:一种生产要素的合理投入第三节 长期生产函数(一):多种生产要素的最优组合第四节 长期生产函数(二):规模报酬,6,厂商经济行为模型,利润最大化,总收入,总成本,产品销售量,产品价格,要素雇佣量,要素价格,7,第一节 生产函数,一、生产函数1.生产要素(Factor of Production)包括劳动(Labour)、资本(Capital)、土地(Land)和企业家才能(Enter-Preneurship)。劳动指一切有经济意义的活动;资本包括资本品和商标专利等无形资产;土地包括一切自然力;企业家才能指企业家组织生产、创新、承担风险的能力。,8,第一节 生产函数,2.生产函数(Production Function)即表示在某一时期和一定的技术水平下,各种要素投入量的某一种组合,同它所能产出的最大可能的产量之间的依存关系。函数公式 Q=F(L,K,N,E)其经济含义是:在既定的技术条件下,生产Q数量的某产品取决于所投入的L,K,N,E等生产要素的组合与数量。为了分析方便起见,通常把生产函数表达式简化为:Q=F(L,K),9,理解生产函数的概念需要注意以下几个问题:第一,生产函数中的产量,是指一定的投入要素组合所能生产出来的最大产量,也就是说,生产函数所反映的投入与产出关系是以企业的投入要素都得到充分利用为假定条件的。第二,生产函数取决于技术水平。生产技术的改进,可能会改变投入要素的比例,导致新的投入产出关系,即新的生产函数。第三,生产一定量某种产品所需要的各种生产要素的配合比例被称为技术系数。它可以是固定的,但更多情况下是可以改变的。,第一节 生产函数,10,注意:生产函数的前提条件是一定时期内既定的生产技术水平,一旦生产技术水平变化,原有生产函数就会变化,从而形成新的生产函数。,11,第一节 生产函数,3、常见的生产函数(1)固定投入比例生产函数 固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。假定生产中只使用劳动(L)和资本(K)两种生产要素,则固定投入比例生产函数通常写为:,12,第一节 生产函数,其中,Q表示一种产品的产量,U和V分别为固定的劳动和资本的生产技术系数,各表示生产一单位产品所需的固定的劳动的投入量和资本的投入量。该生产函数表示:产量Q取决于 和 这两个比值中较小的一个。这是因为Q的生产被假定为必须按照L和K之间的固定比例,当一种生产要素数量固定时,另一种生产要素数量再多,也不能增加产量。该生产函数一般又假定劳动(L)和资本(K)两种生产要素都满足最小的要素投入组合的要求,则有:,13,第一节 生产函数,上式表示两种生产要素的固定投入比例等于两种生产要素的固定生产技术系数之比。就固定投入比例生产函数而言,当产量发生变化时,各要素的投入量以相同的比例发生变化,故各要素的投入量之间的比例维持不变。,14,第一节 生产函数,(2)柯布道格拉斯生产函数 柯布道格拉斯生产函数是由数学家柯布和经济学家道格拉斯于20世纪30年代初共同提出的。该生产函数的一般形式为:其中,A、均为参数,01,01。参数、的经济含义是:当+1时,、各表示劳动和资本在生产过程中的相对重要性,为劳动所得在总产量中所占份额,为资本所得在总产量中所占份额;根据、之和,判断规模报酬。当+1,则为规模报酬递增;当+1,则为规模报酬不变;当+1,则为规模报酬递减。,15,二、长期与短期 经济学上所说的“短期”、“长期”不是指一个具体的时间跨度,而是指能否来得及调整全部生产要素的时期。短期是指企业不能根据它所要达到的产量来调整全部生产要素的时期,也就是说,在这一时期内,企业为了实现产量目标,只能调整劳动、原材料、燃料这类生产要素,而来不及调整厂房、设备、管理人员这类生产要素。,第一节 生产函数,16,第一节 生产函数,长期是指企业可以根据其产量目标调整全部生产要素的时期。例如,企业根据它要达到的产量,可以缩小或扩大生产规模,也可以进入或退出一个行业的生产。显然,短期和长期的划分是以企业能否变动全部生产要素的投入量为标准的。不同的行业,短期和长期的时间长度不同。,17,注意:短期和长期的划分并非按照具体的时间长短。对于不同的产品生产,短期和长期的具体时间的规定是不同的。例如,变动一个大型炼油厂的规模可能需要五年,则其短期和长期的划分以五年为界,而变动一个小食店的规模可能只需要一个月,则其短期和长期的划分仅为一个月。,18,三、短期生产函数与长期生产函数 短期生产函数研究在其它要素的投入不变时,一种生产要素的投入和产量之间的关系,以及这种可变生产要素的合理投入量是多少。例如,假设资本投入量不变,劳动投入量可变,则生产函数可表示为:Q=f(L)。这就是短期生产函数,它采用的是一种可变要素投入变动的生产函数形式。短期生产函数反映了既定资本投入量下,一种劳动要素投入量与所能生产的最大产量之间的相互关系。,第一节 生产函数,19,长期生产函数研究多种要素投入组合和产量之间的关系,即考察企业如何把既定的成本用于多种生产要素的购买,以实现利润最大化。在生产理论中,通常以两种生产要素的生产函数来考察长期生产问题。假定企业使用的劳动和资本都是可变的,则生产函数可以表示为:Q=f(L,K),这就是长期生产函数。它表示在技术水平不变的条件下,由两种生产要素的投入组合所能生产的最大产量。,第一节 生产函数,20,第二节 短期生产函数:一种生产要素的合理投入,假定资本和其它要素固定不变,只变动劳动要素的数量,则生产函数为 Q=f(L);这时可通过总产量TP、平均产量AP和边际产量MP这三个概念来说明要素投入与产量的变动关系。,一、实物产量的种类(1)总产量:使用一定量的某种要素投入所获得的产量总和。即 TP=Q=f(L)=APL(2)平均产量:平均每单位变动要素投入所能生产的产量。即 AP=TP/L=f(L)/L(3)边际产量:每增加一单位变动要素投入所增加的总产量。即 MP=TP/L=dTP/dL,L,TP,AP,MP,012345678,0820364855606056,0810121211108.67,08121612750-4,21,二、实物产量变化的三个阶段,Q,TP,AP,MP,L,O,L1,L2,L3,Q2,Q1,L4,Q3,T2,N,T3,第一阶段:从O-L3劳动的边际产量大于劳动的平均产量,从而使劳动的平均产量和总产量都在增加。第二阶段:从 L3-L4总产量由B点到达最高点C的阶段。劳动的边际产量小于劳动的平均产量,从而使平均产量递减,但边际产量大于零,总产量仍以递减的速度递增。第三阶段:从 L4以后总产量从其最高点C开始下降,边际产量为负,因此为负报酬阶段。依据三个阶段的不同变动情况,可确定生产要素的合理投入区域。,总产量、平均产量、边际产量曲线,Q4,B,C,D,E,几何测定:AP=直线的斜率=OQ1/O L1=FL1/O L1MP=切线的斜率=Q2Q3/L2L3=Q/L=KB/NK=TP线的斜率。,F,K,T1,T4,22,三、三种实物产量的关系,(1)总产量与平均产量 总产量曲线上任何一点的平均产量,就是原点O到这一点射线的斜率。开始时,射线随总产量的增大而增大,平均产量递增;当射线与总产量线切于B点时,其斜率最大,即平均产量最大。过了B点,其斜率递减,即平均产量递减。,23,(2)总产量与边际产量 总产量曲线上任何一点的边际产量,就是这一点切线的斜率。在拐点N之前,切线的斜率为正且递增,即边际产量递增;到N点,切线的斜率最大,即边际产量最大;过N点以后切线的斜率递减,即边际产量递减;到达C点时,切线斜率为0,即边际产量为0;过C点以后,切线的斜率由正变负,边际产量为负数,总产量也开始下降。,24,(3)平均产量与边际产量 当边际产量大于平均产量时,平均产量递增;当边际产量小于平均产量时,平均产量递减;当边际产量等于平均产量时,平均产量最大,说明边际产量过平均产量曲线的最高点。,25,四、边际收益递减规律,定义:在其它要素投入量保持不变的条件下,如果连续追加相同数量的某种要素投入,其产量的增加在达到某一点后会减少。边际收益递减规律的前提条件:(1)技术水平既定不变;(2)生产要素的投入比例可变;(3)增加的要素须有同等的效率。,26,在图中,可以看出边际产量表现出先上升而后下降的变动趋势,这一变动趋势被称为边际报酬递减规律,也称边际收益递减规律。边际报酬递减规律是指在技术水平不变的条件下,当把一种可变生产要素投入到一种或几种不变生产要素中时,最初边际产量是递增的,但当该生产要素的增加超过一定限度时,边际产量会递减,甚至还会绝对减少。,27,理解边际报酬递减规律需要注意以下几点:第一,技术水平不变。即生产技术没有重大变化。否则在保持其它要素不变而连续增加某种生产要素时,边际报酬不一定递减,而可能递增。第二,生产要素投入量的比例可变。也就是说,只有在保持其它生产要素不变而只增加一种生产要素的投入量时,边际报酬递减才会发生。如果各种生产要素投入量同比例增加,边际报酬不一定递减。第三,在其它生产要素不变时,连续增加一种可变要素的投入量,边际产量的变动经历递增、递减和变为负值三个阶段。需要注意的是,边际产量递增与边际报酬递减规律并不矛盾。因为边际报酬递减规律的意义是:连续增加一种可变要素的投入量,迟早会出现边际报酬递减的趋势,而不是一开始就递减。,28,边际报酬递减规律存在的原因是:在任何产品的生产过程中,可变要素投入量和不变要素投入量之间存在一个最佳组合比例。在没有达到最佳组合比例之前,可变要素的投入量相对于不变要素来说还太少,因此增加可变要素投入可以使生产要素的组合逐渐接近最佳组合比例。在这一过程中,边际产量是递增的。但是,从达到最佳组合比例开始,继续增加可变要素,可变要素的投入量相对于不变要素来说就太多,生产要素的组合比例逐渐偏离最佳组合比例,边际产量便呈现递减趋势。,29,五、最佳投入阶段,第一阶段(图中区域),劳动的总产量、平均产量是增加的,这说明在这一阶段,相对于不变的资本来说,劳动量缺乏,所以劳动量的增加可以使资本得到充分利用,从而使总产量和平均产量增加。因此任何理性的生产者都不会在这一阶段停止生产,而是连续增加劳动要素的投入量,并将生产扩大到第二阶段。第二阶段(图中区域),劳动的平均产量开始下降,但边际产量仍然大于零,因此总产量仍一直在增加。在这一阶段的起点,平均产量最大;终点处,边际产量为零,总产量最大。,30,五、最佳投入阶段,第三阶段(图中区域),这时劳动的边际产量为负值,总产量开始绝对减少。这表明相对于不变的资本量而言,劳动量投入过多,因此生产无论如何不能进行到这一阶段。以上分析说明,任何理性的生产者既不会将生产停留在区域,也不会在区域进行生产,所以生产只能在区域进行,也就是说,劳动量投入的合理区域在区域。但是,劳动量的投入究竟在区域的哪一个点上,才能使企业的利润最大呢?这要看生产要素的价格。,31,第三节 长期生产函数(一):多种生产要素的最优组合,在长期中,所有的生产要素投入量都是可变的,而且,多种投入要素之间是往往是可以互相替代的。因此,这就有一个最优组合问题。在成本一定的条件下,投入要素之间怎样组合,才能使产量最大;或在产量一定的条件下,怎样组合,才能使成本最低。这类问题就是多种投入要素最优组合问题。人们常常通过它选择最优技术。如前所述,我们以两种生产要素的生产函数,来讨论多种要素投入组合与产出之间的关系。为了寻找投入要素的最优组合,需要利用等产量曲线和等成本曲线。,32,第三节 长期生产函数(一):多种生产要素的最优组合,假定生产某种产品所使用的两种要素都是可以变动的,并且两种要素可一相互替代,则生产函数为Q=f(L,K)。生产中既可以多用劳动少用资本,也可以少用劳动多用资本。以追求最大利润为目标的厂商,总是力求选择最佳的或最合适的生产要素组合,以最低成本生产某一既定产量。说明最佳要素组合,需用等产量曲线和等成本曲线概念。,33,第三节 长期生产函数(一):多种生产要素的最优组合,一、等产量曲线1.定义:等产量曲线是指在一定技术条件下,可以生产出同等产量的两种要素有效组合点的轨迹。如表:k,组合方式 L数量 K数量 X的产量,ABCDE,357911,1510631,200200200200200,QX=100,QX=200,QX=300,A,B,C,D,E,L,O,L,34,第三节 长期生产函数(一):多种生产要素的最优组合,2.等产量曲线的特征与无差异曲线相似,等产量曲线具有如下特征:第一,等产量曲线向右下方倾斜,其斜率为负值。这是因为,保持产量不变,增加一种要素的投入量时,必须减少另一种要素的投入量。图等产量曲线组 第二,在同一平面图上,可以有无数条等产量曲线,位置较高的等产量曲线代表较高的。产量水平。如图所示。第三,同一平面图上的任意两条等产量线不能相交。因为在交点上两条等产量线代表了相同的产量水平,与第二个特征相矛盾。第四。等产量线是一条凸向原点的线。这是由边际技术替代率递减规律所决定的。,35,二、边际技术替代率,等产量曲线之所以凸向原点或是斜率递减,需用生产要素的边际技术替代率加以说明。,1)定义与公式:边际技术替代率就是当产量水平不变时,两种投入相互替代的比率;或者说,为维持原有的产量水平不变,每增加一单位X要素的使用而必须放弃的Y要素的数量。用公式表示就是:MRTSXY=Y/X,2)生产要素的边际技术替代率也就是等产量曲线的斜率。,3)劳动对资本的边际技术替代率也等于劳动的边际产量与资本的边际产量之比:MRTSLK=K/L=MPL/MPK可说明如下:因 QK=MPKK同理 QL=MPLL为使总产量不变,应是QK=QL即因减少Y而减少的QY与因增加X而增加的QX应相抵消,二者方向相反,因此得出:MPKK=MPLL 移项得:MRTSLK=K/L=-MPL/MPK,4)边际技术替代率递减规律。在产量或其它条件不变的情况下,如果不断增加一种要素以替代另一生产要素,那么,一单位该生产要素所能替代的另一种生产要素的数量将不断减少。实际上这是由于收益递减规律作用的结果。上例中MRTSXY分别为:A-B,2.5;B-C,2;C-D,1.5;D-E,1。,36,三、射线、脊线和生产的经济区,射线,具有固定投入比例的等产量线,资本,劳动,O,Q=50,Q=100,Q=150,A,B,C,图中OA、OB为脊线;脊线以内等产量曲线斜率为负的区间即是生产的经济区,这时两种要素可替代,能找到比脊线以外更有效率或更便宜的组合例:劳动固定为L1、资本为K3时,Q=50;减少资本为K2时,Q=100。反之,资本固定为K1、劳动为L3时,Q=50;减少劳动为L2时,Q=100。,K,L,O,Q=50,Q=100,Q=150,A,B,K2,K1,K3,L2,L1,L3,K边际产量为负,L边际产量为负,37,四、等成本曲线,定义:等成本曲线是指一定数量的总成本所能购买的两种生产要素最大组合点的轨迹。例:假定某厂商有总成本支出R=100每单位劳动的价格PL=10元;每单位资本的价格PK=20元,则可能购买的商品组合如下表:,L要素数量 K要素数量 总支出R,0246810,543210,100100100100100100,公式:R=PKK+PLL,54321,K,L,2 4 6 8 10,100=20K+10L斜率=OA/OB=R/PKR/PL=R/PK PL/R=PL/PK,O,B,A,C,D,等成本曲线的移动:劳动要素价格变动,K,L,A,B,B1,B2,O,要素价格不变等成本曲线平行移动,80=20K+10L,38,五、生产要素的最佳组合,定义:最佳要素组合是指为生产一定量产品所需的各种要素组合中,总成本最低的那种组合;或是使花费既定数量的总成本所生产的产量为最大的那种组合。最佳组合的原则:就是在成本既定前提下,使得所购买的各种生产要素的边际产量与价格之比都相等。若成本为一定,可得方程组:,限制条件:,实现条件:,MRTSLK=-K/L=MPL/MPK=PL/PK,O,K,L,Q=50,Q=150,Q=100,E,A,B,若产量既定,求成本最低,可得方程组:MPL/PL=MPK/PK;Q=f(L,K),K,L,O,Q=100,E,A,B,39,例题:,已知生产函数为,如果成本支出,单位货币,所能生产的最大产量,是多少?如果要生产的产量是495,最小成本是多少?,(1)由,得偏导数,已知成本方程和价格比为,因此可得方程组,解得,代入生产函数得 Q=495,40,(2)如果已知生产函数是,可得方组,解得,已知X=6Y代入得,根据最小成本原则,把方程组的解,代入成本方程,可得,即最小成本。,R=132,41,六、生产要素最优组合原则的应用,生产要素最优组合原则意味着,当生产要素的价格比例发生变动时,企业会更多的使用比以前便宜的生产要素,少使用比以前贵的生产要素,以达到既定产量下成本最小的目的。如图所示。假定劳动价格下降了,或资本的价格上升了,就会使投入要素的价格比例发生变化,从而使等成本曲线斜率的绝对值变小。以上道理可以用来解释,为什么如果从纯经济学的角度考虑,对发达国家来说是适宜的先进技术,对发展中国家不一定适宜。以上道理也可以用来解释为什么有些国家的农业主要采用广种薄收的耕作方式,而另一些国家则采取精耕细作的耕作方式。,42,六、生产要素最优组合原则的应用,43,第四节 长期生产函数(二):规模报酬,规模报酬分析研究的是企业的生产规模变动与它所引起的产量变动之间的关系。企业只有在长期内才能调整全部生产要素,进而变动生产规模。所以,规模报酬分析属于长期生产函数问题。为了分析的简便,我们假定企业在生产中投入的全部生产要素按相同的比例发生变动。研究生产要素的同比例变动,就是要确定多大的生产规模是最适宜的。,44,第四节 长期生产函数(二):规模报酬,一、规模报酬变动的三种情形 规模报酬变动是指在其它条件不变的情况下,企业内部各种生产要素按相同比例变动所引起的产出变动。我们根据投入变动与产出变动之间的关系将长期生产函数划分为规模报酬递增、规模报酬不变和规模报酬递减三种情形。1.规模报酬递增 如果产量增加的比例大于各种投入要素增加的比例,则存在规模报酬递增。例如,当全部生产要素投入量增加一倍,产量的增加超过一倍。,45,第四节 长期生产函数(二):规模报酬,规模报酬递增的原因可从三个方面分析:第一,生产要素的使用效率充分发挥。许多要素必须达到一定产量水平时才能更有效率。这表明原有生产规模中含有扩大生产的潜力。第二,生产专业化程度提高。当生产要素同时增加的时候,可以提高生产要素的专业化程度。这有助于提高工人的生产技术(把复杂的活动变为简单的活动,工人更易于掌握),从而提高劳动生产率。第三,管理更加合理。生产规模扩大时,容易实行现代化管理。现代化管理,会造成一种新的生产力。合理的、先进的管理可以更进一步充分发挥各要素的组合功能,带来更大的效率和效益。,46,第四节 长期生产函数(二):规模报酬,2.规模报酬不变 如果产量增加的比例等于各种投入要素增加的比例,则存在规模报酬不变。例如,当全部生产要素投入量增加一倍,产量也增加一倍的情况。通常,当规模扩大到生产要素的效率和生产专业化的好处得以充分发挥,劳动生产率得到充分提高的时候,规模报酬达到不变的阶段。,47,第四节 长期生产函数(二):规模报酬,3.规模报酬递减 如果产量增加的比例小于各种投入要素增加的比例,则存在规模报酬递减的情况。例如,当全部生产要素的投入量增加一倍,产量增加了0.5倍的情况。规模报酬递减的主要原因是由于:企业生产规模过大所产生的管理上的困难。比如庞大的管理机构和复杂的管理层级容易滋生官僚主义,企业不易获取决策信息,缺乏灵活性,难以适应千变万化的市场等等。当生产处于规模报酬递增阶段时,随着生产规模的扩大,产品平均成本会下降,这可称为规模经济。反之,则称为规模不经济。,48,第四节 长期生产函数(二):规模报酬,二、适度规模 以上分析说明,企业的生产规模不能过小,也不能过大。即要实现适度规模。适度规模就是使生产要素投入量的增加,即生产规模的扩大正好使报酬递增达到最大。当报酬递增达到最大时就不再增加生产要素的投入,并使这一生产规模维持下去。,49,第四节 长期生产函数(二):规模报酬,在确定适度规模时应该考虑两个因素:一是本行业的技术特点。一般来说,需要大量复杂先进设备投资的行业,适度规模比较大。相反,需要投资少,所用设备简单的行业,适度规模比较小。二是产品的标准化程度。产品标准化程度高的企业,适度规模较大,产品标准化程度低的企业,适度规模也较小。这也是资本密集型行业适度规模大于其它行业的原因。,50,线性齐次生产函数与规模收益,线性齐次生产函数,假如一个生产函数的每种要素投入都乘以常数K以后,这个常数能被分解为公因子,这样的生产函数就是线性齐次生产函数。例如生产函数Q=2X+3Y+1.5Z,如果所有要素使用量都增加K倍,则有:hQ=K(2X)+K(3Y)+K(1.5Z)=K(2X+3Y+1.5Z)因为K能被提出为公因子,每一项都包含有公因子的同次方,这就是齐次函数。公式中K作为公因子,其指数是1,即h=k。但指数并非总是为1,公因子的指数有时会大于1或小于1。例如在生产函数Q=X0.3Y0.7Z0.2中,按比例增加每种要素的使用量,得:hQ=(kX)0.3(kY)0.7(kZ)0.2,把K这个公因子分解出来得:hQ=k(0.3+0.7+0.2)(X0.3Y0.7Z0.2)=k1.2(X0.3Y0.7Z0.2),这时,h=k1.2,所以hk。通过以上说明可知,如果把K分解出来可得到方程:hQ=knf(X,Y,Z)。从上述方程可知h=kn,这里n决定了生产函数的齐性次数:如果n=1,则函数的齐性次数为1;如果n1,则函数的齐性次数大于1;所以n这个指数所表示的齐性次数,是测量规模收益率的尺度:当n1时,规模收益率递增;当n1时,规模收益率递减;当n=1时,规模收益率不变;,51,规模效益可以分为三个阶段:,a.规模报酬递增-生产要素扩大规模 小于产出扩大规模。b.规模报酬不变-生产要素扩大规模 等于产出扩大规模。c.规模报酬递减-生产要素扩大规模 大于产出扩大规模。,Q,L、K,O,a,b,c,52,例:铁路业的规模报酬,20世纪以后,尽管遇到不少资金问题,铁路运输仍不断发展。规模对铁路运输业有无影响?要研究铁路运输业是否存在规模经济效应,需要一系列指标。首先可以用运输密度来度量投入。运输密度指的是在一特定线路上每单位时间内铁路可以承运的货物吨数。产出以沿着该线路在特定时间内运输的货物总重量计。产出与投入之间的规模报酬关系如何?大量研究表明,起初,在运输密度值较小时,存在着规模报酬递增效应,因为在运输密度增加以后,铁路管理部门可以统筹规划,制定出适宜的、富有效率的运输方案。但是,当运输密度的增加超过某一值(这一点称为有效密度)后,会出现规模报酬递减,因为超负荷的运输量已经多得难以规划,运输速度也将有所下降。这种现象只有在运输密度值很大时才会出现。,53,复习题,一、概念题生产函数 边际收益递减规律 总产量 平均产量 边际产量 等产量曲线 边际技术替代率 等成本曲线 规模收益二、判断正误(判断对或错,对的在括号里打“”。错的在括号里打“”)1短期是至少一种投入量固定,一种投入量可变的时期。()2.长期是指一年以上。()3只要总产量减少,边际产量一定是负值。()3在其他生产要素不变条件下,一种生产要素投入越多,即总产量越大。()5.当边际产量低于平均产量时,总产量就会减少。()6边际产量曲线一定会交于平均产量曲线的最高点。()7边际报酬递减规律作用的前提条件是生产技术水平不变。()8.边际报酬递减规律意味着,随着可变投入量的增加,边际产量曲线最终要向右下方倾斜。,54,复习题,9 当平均产量曲线达到最高点时,总产量达到最大。()10等产量线上任意一点所代表的生产要素组合,所生产的产量是相同的。()11在同一平面图上,两条等产量曲线之间不能相交。()12离原点越近的等产量曲线表示产量越大。()13在同一条等产量曲线上,左上方的点代表的产量大于右下方的点所代表的产量。()14在同一个平面上,一般只有三条等产量曲线。()15.等成本线表明了用既定总成本所能购买的资本量与劳动量的所有组合。()16如果劳动增加2单位要求使用的机器减少1单位才能保持产量水平不变,劳动对资本的边际替代率为2。()17等产量曲线与等成本曲线的交点是表示生产要素最佳组合点。(),55,复习题,18.当一个企业用最低成本技术进行生产时,边际替代率等于投入品的相对价格。()19.如果一个企业用最低成本技术进行生产,那么,劳动价格上升而资本价格不变就意味着该企业将更多使用劳动,而更少使用资本。()20 当投入每一种生产要素的单位边际产量相等时,生产要素的组合达到最佳。()21.如果劳动的相对价格下降了,资本的密集程度就会提高。()22无论哪个行业,企业的规模都是越大越好。(),56,复习题,三、选择题(在四个备选答案中选择一个正确的答案填入括号里)1.经济学分析中所说的长期是指()A.1年以上 B.只能根据产量调整部分生产要素的时期;C.5年以上 D.全部生产要素均可随产量进行调整的时期。2在其他生产要素不变的条件下,一种可变的生产要素增加时()。A总产量会一直增加 B.总产量保持不变C.总产量先增加后减少 D.总产量会一直减少3.可变投入量增加1单位所引起的总产量变动量称为()。A平均产量B边际产量 C平均可变产量 D总产量4.在其他生产要素不变的条件下,平均产量曲线与边际产量曲线的交点代表()。A总产量达到最大 B.要素产出效率最高 C.边际产量为零 D.边际产量达到最大,57,复习题,5.在其他生产要素不变的条件下,当边际产量等于零时,()。A.平均产量达到最大 B.总产量达到最大 C.平均产量为零 D.总产量为零6.在只有一种生产要素为可变的条件下,总产量、平均产量与边际产量的关系说法正确的是()。A.它们都是呈现先上升后下降的趋势 B.平均产量一定交与边际产量的最高点;C.当边际产量为零时,总产量达到最大 D.当平均产量达到最高点时,总产量达到最大。7.边际报酬递减规律研究的问题是()。A.各种生产要素同时变动对产量的影响 B.不同生产要素变动对产量的影响 C.特殊生产要素变动对产量的影响 D.其他生产要素不变,一种生产要素变动对产量的影响,58,复习题,8.关于边际报酬递减规律的理解正确的是()。A规律发生作用的前提是技术不断进步 B它是反映多种可变生产要素的产出规律 C它是反映所有条件下普遍的产出规律 D.它是指在一定条件下,随着每种生产要素投入量的增加,其单位产出量会呈减少趋势9当边际产量小于平均产量时()。A平均产量递增 B边际产量递增 C总产量曲线的右下方倾斜 D企业处于收益递减状态10.在一定的技术条件下,反映两种生产要素的任何组合实现产量一致的曲线,称()。A.无差异曲线 B.总产量曲线 C.等产量曲线 D.平均产量曲线,59,复习题,11劳动对资本的边际替代率衡量()。A在保持产量不变时,劳动量增加1单位资本量增加多少 B在保持产量不变时,劳动量增加1单位资本量减少多少 C相对于资本价格的劳动价格 D等成本线的斜率12等成本线的斜率是()。A劳动的边际产量与资本的边际产量的比率 B资本的边际产量与劳动的边际产量的比率 C劳动的价格与资本的价格的比率 D资本的价格与劳动的价格的比率13.根据等产量曲线与等成本线的关系,表示生产要素最佳组合的点是()。A.两者的交点 B.等产量曲线离原点最远的点 C.两者的切点 D.等成本线离原点最远的点,60,复习题,14.下列哪种情况不是最低成本生产技术的特点()。A劳动对资本的边际替代率等于劳动的价格与资本的价格的比率 B等产量线的斜率等于等成本线的斜率 C等成本线与等产量线相切 D劳动的边际产量等于资本的边际产量15.规模经济研究的问题是()。A.单一可变生产要素的变动对产量的影响 B.各种生产要素同比例变动对产量的影响 C.多种生产要素同时变动对产量的影响 D.一种生产要素减少、另一种生产要素增加对产量的影响。,61,复习题,16规模报酬递增是在下述情况下发生的()。A连续增加某一种生产要素,其它生产要素不变 B各种生产要素同比例增加 C各种生产要素不同比例增加 D劳动要素减少,资本要素增加17.规模报酬递增的主要原因是()。A.生产规模扩大 B.生产专业化 C.生产技术提高 D.生产效率提高,62,案例分析【1】三季稻不如两季稻,1958年“大跃进”是一个不讲理性的年代,时髦的口号是“人有多大胆,地有多高产”。于是一些地方把传统的两季稻改为三季稻。结果总产量反而减少了。从经济学的角度看,这是因为违背了边际报酬递减规律。,63,案例分析【1】三季稻不如两季稻,两季稻是我国农民长期生产经验的总结,它行之有效,说明在传统农业技术下,土地、设备、水利资源、肥料等生产要素得到了充分利用。在农业耕作技术没有发生重大改变的条件下,两季稻改为三季稻并没有改变上述生产要素,只是增加了劳动、种子的投入量,这导致土地因过度利用而引起肥力下降,设备、水利资源、肥料等由两次使用改为三次使用,每次使用的数量不足。这样,三季稻的总产量反而低于两季稻。后来,四川省把三季度改为两季稻之后,全省的粮食产量反而增加了。江苏省邗江县1980年的试验结果表明,两季稻每亩总产量达2014斤,而三季稻只有1510斤。更不用说两季稻还节省了生产成本。群众总结的经验是“三三见九,不如二五一十”。这就是对边际报酬递减规律的形象说明。改编自梁小民微观经济学纵横谈,三联书店,2000年。,64,案例分析【2】引进自动分拣机是好事还是坏事?,前些年我国邮政业实行信件分拣自动化,引进自动分拣机代替工人分拣信件。从经济学的角度看,这是一件好事还是坏事呢?假设邮局作为一个企业引入自动分拣机的目的是实现利润最大化,自动分拣机的使用能否达到这一目的,涉及到两个重要概念:技术效率和经济效率。技术效率是指投入和产出的物质技术关系,当投入既定时产出最大,或者产出既定时投入最小时就实现了技术效率。经济效率是指成本和收益之间的相互关系,当成本既定时收益最大,或者收益既定时成本最小时就实现了经济效率。,65,案例分析【2】引进自动分拣机是好事还是坏事?,企业利润最大化,既要实现技术效率,又要实现经济效率。没有技术效率,就谈不上经济效率。但只有技术效率而没有经济效率,也谈不上利润最大化。因为经济效率涉及到投入和产出的价格。假设某邮局引进一台自动分拣机,只需一人管理,每日可处理10万封信件。如果用人工分拣,则处理10万封信件需要50个工人。对邮局来说,这两种情况都实现了技术效率。但是否实现了经济效率还要考虑价格。处理10万封信,无论用什么方法,收益是相同的,但成本不同。假设一台分拣机为400万元,使用寿命10年,每年折旧为40万元。假定贷款利率为10%,每年利息为40万元。再假设分拣机每年维修费、用电、人工费为5万元。这样,使用分拣机的成本为85万元,假设每个工人每年工资为1.4万元,50个工人共70万元,其它支出为5万元,这样,使用人工分拣成本为75万元。显然,使用分拣机实现了技术效率,但没有实现经济效率,而使用人工分拣既实现了技术效率,又实现了经济效率。,66,案例分析【2】引进自动分拣机是好事还是坏事?,这个例子告诉我们,如果两种生产方法都能达到同样的技术效率,那么,使用那种方法实现经济效率则取决于生产要素的价格。在发达国家,资本设备便宜而劳动工资高,使用资本密集型生产方法是合适的。但在发展中国家,资本设备贵而劳动工资低,如果使用机器和人工能达到同样的产品和劳务质量,还是使用劳动密集型生产方法更为合适。因此,发展中国家不能盲目引进最先进的技术,而应该选择最适合自己国情的技术。盲目追求机械化、自动化,并不一定能带来更好的结果。改编自梁小民微观经济学纵横谈,三联书店,2000年。,67,案例分析【3】移动梦网短信的故事,移动梦网(Monternet)是中国移动2001年推出的移动互联业务全国统一品牌。中国移动集团推出梦网计划以来,手机短信以其特有的技术和业务优势,很快打破电话声讯业务在信息平台的垄断,形成竞争格局。据中国移动统计,2002年上半年中国移动用户发送短信总数为282亿条,远远超过2001年全年158亿的总量,接近中国移动原定全年300亿条的预期目标。另外,在第六届中国GSM年会上,中国移动高层人员向媒体透露,目前中国手机用户正以每月500万的数量高速增长,预计2002年以手机短信为代表的移动数据业务将会为移动数据市场贡献至少60亿元收入。2000年只有10亿元市场规模,两年后可能上升到60亿元,短信市场高速发展令人惊叹不已。我们可以从规模经济的角度来分析这一市场快速发展的原因。为实现向用户提供更有价值服务这一最终目标,中国移动将走出运营商的传统定位,转而与众多内容/应用提供商合作,实现开放和公平接入,并以客户聚集者的身份架起服务提供商与用户之间的桥梁。现有的WAP平台、短消息平台都可向社会不同合作伙伴开放,并以“一点接入,全网服务”为原则,通过不断升级和完善计费系统,给合作伙伴充分施展才能提供条件。,68,案例分析【3】移动梦网短信的故事,中国移动之所以能够提供网络平台和网络服务,关键在于这类网络信息产品具有很强的规模经济效应。移动电话系统包括遍布全国的交换和传输系统以及成千上万个基站,但它传输的是信息产品,传递每个呼叫或短信的边际成本很小。由于边际成本小,运用商的话务量越大,其平均成本就越低。移动梦网“一点接入,全网服务”,进一步降低了运营商的边际成本。反观固定电话声讯系统,由于是以本地网为单位建立,每增加一个节目源,或者不能全网服务,或者每个本地网都要修改和增加相应数据(涉及流程装载、计费和结算等内容)。因而需要耗费大量额外人力物力,难以提供真正意义