欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    【教学课件】第三节全微分.ppt

    • 资源ID:5661147       资源大小:457KB        全文页数:20页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【教学课件】第三节全微分.ppt

    第三节 全微分,一、全微分的定义二、全微分存在的必要条件三、全微分存在的充分条件,一、全微分的定义,设二元函数y=f(x,y)在点(x0,y0)的某邻域内有定义.当自变量x,y在点(x0,y0)的该邻域内分别取得增量 和 时,函数的全增量为,一元函数y=f(x)在点x0处的微分:,其中,例1 设矩形金属薄板长为x,宽为y,则面积S=xy.薄板受热膨胀,长自x0增加,宽自y0增加,其面积相应增加,全增量 由 三项组成.比其余两项小得多.,所以全增量 只是 的函数.,将增量 分离出 和 的线性部分,再加上一项比 高阶的无穷小.,又因为x0,y0为常数,,定义8.6 设二元函数z=f(x,y)在点(x0,y0)的某邻域内有定义,如果z=f(x,y)在点(x0,y0)的全增量,可表示为,其中A,B与 无关,是比 高阶的无穷小,则称 为函数z=f(x,y)在点(x0,y0)处的全微分,记作dz,即,也称函数z=f(x,y)在点(x0,y0)处可微.,与一元函数类似,全微分dz是 的线性函数,是比 高阶的无穷小.当 充分小时,可用全微分dz作为函数的全增量 的近似值.,二、全微分存在的必要条件,定理8.2(全微分存在的必要条件)如果函数z=f(x,y)在点(x0,y0)处可微,则f(x,y)在该点的两个偏导数存在,并且 A=fx(x0,y0),B=fy(x0,y0).,取,此时,则有,两边同除以,再令,取极限,得,这个可定理得到全微分的计算公式:,与一元函数微分类似,规定自变量x,y的增量等于自变量的微分dx,dy,即.于是全微分又可写成,如果函数f(x,y)在开区域D内每一点处都可微,则称f(x,y)在域D内是可微的.这样,域D内任一点处的全微分为,或写成,定理8.3(全微分存在的必要条件)如果函数z=f(x,y)在(x0,y0)点可微,则函数z=f(x,y)在点(x0,y0)处连续.,证 根据函数可微的定义,有,当 时,有,,根据函数连续性定义,z=f(x,y)在点(x0,y0)处是连续的.,因此,三、全微分存在的充分条件,例如,在点(0,0)处不连续,故由定理10.3可知,在(0,0)点是不可微的.但这个函数在(0,0)点的两个偏导数是存在的且,该例说明,尽管函数在(0,0)点的两个偏导数存在,但函数在(0,0)点仍是不可微的,即定理10.2的逆定理是不成立的.下面的定理给出了函数z=f(x,y)可微的充分条件.,定理8.4(全微分存在的充分条件)设函数z=f(x,y)在点(x,y)存在连续的偏导数,则函数z=f(x,y)在点(x,y)可微.,上面三个定理可以完全推广到三元和三元以上的多元函数.如三元函数u=f(x,y,z)的全微分存在,则有,例2 求 的全微分.,解,而且它在Oxy平面上处处连续,所以在点(x,y)处的全微分为,例3 求 的全微分.,解,例4 求z=xe-xy+arcsinxy的全微分.,解,例5 求 在点(2,1)处的全微分.,解 由于 是连续函数,且,所以在点(2,1)处的全微分为,例6 求z=xy在点(2,3)处,关于 的全增量与全微分.,解,将各值代入上式,得到,例7 求 的全微分.,解,

    注意事项

    本文(【教学课件】第三节全微分.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开