【教学课件】第一章半导体器件.ppt
第一章 半 导 体 器 件,1.1 半导体基础知识 1.2PN结 1.3 半导体三极管,1.1 半导体基础知识 物质按导电性能可分为导体、绝缘体和半导体。物质的导电特性取决于原子结构。导体一般为低价元素,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。因此在外电场作用下,这些电子产生定向运动(称为漂移运动)形成电流,呈现出较好的导电特性。高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差,可作为绝缘材料。而半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。,1.1.1 本征半导体 纯净晶体结构的半导体称为本征半导体。常用的半导体材料是硅和锗,它们都是四价元素,在原子结构中最外层轨道上有四个价电子。为便于讨论,采用图 1-所示的简化原子结构模型。把硅或锗材料拉制成单晶体时,相邻两个原子的一对最外层电子(价电子)成为共有电子,它们一方面围绕自身的原子核运动,另一方面又出现在相邻原子所属的轨道上。即价电子不仅受到自身原子核的作用,同时还受到相邻原子核的吸引。于是,两个相邻的原子共有一对价电子,组成共价键结构。故晶体中,每个原子都和周围的个原子用共价键的形式互相紧密地联系起来,如图-所示。,图 1 1 硅和锗简化原子结构模型,图 1 2 本征半导体共价键晶体结构示意图,共价键中的价电子由于热运动而获得一定的能量,其中少数能够摆脱共价键的束缚而成为自由电子,同时必然在共价键中留下空位,称为空穴。空穴带正电,如图 1-所示。,图 1 3 本征半导体中的自由电子和空穴,由此可见,半导体中存在着两种载流子:带负电的自由电子和带正电的空穴。本征半导体中,自由电子与空穴是同时成对产生的,因此,它们的浓度是相等的。我们用n和p分别表示电子和空穴的浓度,即ni=pi,下标i表示为本征半导体。,价电子在热运动中获得能量产生了电子-空穴对。同时自由电子在运动过程中失去能量,与空穴相遇,使电子、空穴对消失,这种现象称为复合。在一定温度下,载流子的产生过程和复合过程是相对平衡的,载流子的浓度是一定的。本征半导体中载流子的浓度,除了与半导体材料本身的性质有关以外,还与温度有关,而且随着温度的升高,基本上按指数规律增加。因此,半导体载流子浓度对温度十分敏感。对于硅材料,大约温度每升高,本征载流子浓度ni增加 1 倍;对于锗材料,大约温度每升高,增加 1 倍。除此之外,半导体载流子浓度还与光照有关,人们正是利用此特性,制成光敏器件。,1.1.2 杂质半导体 1.型半导体 在本征半导体中,掺入微量价元素,如磷、锑、砷等,则原来晶格中的某些硅(锗)原子被杂质原子代替。由于杂质原子的最外层有个价电子,因此它与周围个硅(锗)原子组成共价键时,还多余 1 个价电子。它不受共价键的束缚,而只受自身原子核的束缚,因此,它只要得到较少的能量就能成为自由电子,并留下带正电的杂质离子,它不能参与导电,如图-所示。显然,这种杂质半导体中电子浓度远远大于空穴的浓度,即nnpn(下标表示是型半导体),主要靠电子导电,所以称为型半导体。由于价杂质原子可提供自由电子,故称为施主杂质。型半导体中,自由电子称为多数载流子;空穴称为少数载流子。,图 1-4 N型半导体共价键结构,杂质半导体中多数载流子浓度主要取决于掺入的杂质浓度。由于少数载流子是半导体材料共价键提供的,因而其浓度主要取决于温度。此时电子浓度与空穴浓度之间,可以证明有如下关系:,即在一定温度下,电子浓度与空穴浓度的乘积是一个常数,与掺杂浓度无关。,2.P型半导体 在本征半导体中,掺入微量价元素,如硼、镓、铟等,则原来晶格中的某些硅(锗)原子被杂质原子代替。,图 1 5 P型半导体的共价键结构,1.结,1.2.1 异型半导体接触现象,图 1-6 PN结的形成,1.2.2 结的单向导电特性,1.结外加正向电压 若将电源的正极接区,负极接区,则称此为正向接法或正向偏置。此时外加电压在阻挡层内形成的电场与自建场方向相反,削弱了自建场,使阻挡层变窄,如图-()所示。显然,扩散作用大于漂移作用,在电源作用下,多数载流子向对方区域扩散形成正向电流,其方向由电源正极通过区、区到达电源负极。,此时,结处于导通状态,它所呈现出的电阻为正向电阻,其阻值很小。正向电压愈大,正向电流愈大。其关系是指数关系:,式中,为流过结的电流;U为结两端电压;,称为温度电压当量,其中k为玻耳兹曼常数,为绝对温度,q为电子的电量,在室温下即时,;为反向饱和电流。电路中的电阻是为了限制正向电流的大小而接入的限流电阻。,图 1-7 PN结单向导电特性,2.结外加反向电压 若将电源的正极接区,负极接区,则称此为反向接法或反向偏置。此时外加电压在阻挡层内形成的电场与自建场方向相同,增强了自建场,使阻挡层变宽,如图-()所示。此时漂移作用大于扩散作用,少数载流子在电场作用下作漂移运动,由于其电流方向与正向电压时相反,故称为反向电流。由于反向电流是由少数载流子所形成的,故反向电流很小,而且当外加反向电压超过零点几伏时,少数载流子基本全被电场拉过去形成漂移电流,此时反向电压再增加,载流子数也不会增加,因此反向电流也不会增加,故称为反向饱和电流,即。,此时,结处于截止状态,呈现的电阻称为反向电阻,其阻值很大,高达几百千欧以上。综上所述:结加正向电压,处于导通状态;加反向电压,处于截止状态,即结具有单向导电特性。将上述电流与电压的关系写成如下通式:此方程称为伏安特性方程,如图-所示,该曲线称为伏安特性曲线。,(1-1),图 1-8 PN结伏安特性,1.2.3 结的击穿 PN结处于反向偏置时,在一定电压范围内,流过结的电流是很小的反向饱和电流。但是当反向电压超过某一数值()后,反向电流急剧增加,这种现象称为反向击穿,如图-所示。称为击穿电压。结的击穿分为雪崩击穿和齐纳击穿。,当反向电压足够高时,阻挡层内电场很强,少数载流子在结区内受强烈电场的加速作用,获得很大的能量,在运动中与其它原子发生碰撞时,有可能将价电子“打”出共价键,形成新的电子、空穴对。这些新的载流子与原先的载流子一道,在强电场作用下碰撞其它原子打出更多的电子、空穴对,如此链锁反应,使反向电流迅速增大。这种击穿称为雪崩击穿。所谓“齐纳”击穿,是指当结两边掺入高浓度的杂质时,其阻挡层宽度很小,即使外加反向电压不太高(一般为几伏),在结内就可形成很强的电场(可达2106 V/cm),将共价键的价电子直接拉出来,产生电子-空穴对,使反向电流急剧增加,出现击穿现象。,对硅材料的结,击穿电压大于V时通常是雪崩击穿,小于V时通常是齐纳击穿;在V和V之间时两种击穿均有。由于击穿破坏了结的单向导电特性,因而一般使用时应避免出现击穿现象。发生击穿并不一定意味着结被损坏。当PN结反向击穿时,只要注意控制反向电流的数值(一般通过串接电阻实现),不使其过大,以免因过热而烧坏结,当反向电压(绝对值)降低时,结的性能就可以恢复正常。稳压二极管正是利用了结的反向击穿特性来实现稳压的,当流过结的电流变化时,结电压保持基本不变。,1.2.4 结的电容效应 按电容的定义,即电压变化将引起电荷变化,从而反映出电容效应。而结两端加上电压,结内就有电荷的变化,说明结具有电容效应。结具有两种电容:势垒电容和扩散电容。,1.势垒电容CT 势垒电容是由阻挡层内空间电荷引起的。空间电荷区是由不能移动的正负杂质离子所形成的,均具有一定的电荷量,所以在结储存了一定的电荷,当外加电压使阻挡层变宽时,电荷量增加,如图-所示;反之,外加电压使阻挡层变窄时,电荷量减少。即阻挡层中的电荷量随外加电压变化而改变,形成了电容效应,称为势垒电容,用表示。理论推导,图 1-9 阻挡层内电荷量随外加电压变化,图 1-10 势垒电容和外加电压的关系,2扩散电容CD,图 1-11 P区中电子浓度的分布曲线及电荷的积累,2扩散电容CD 扩散电容是结在正向电压时,多数载流子在扩散过程中引起电荷积累而产生的。当结加正向电压时,区的电子扩散到区,同时区的空穴也向区扩散。显然,在区交界处(x),载流子的浓度最高。由于扩散运动,离交界处愈远,载流子浓度愈低,这些扩散的载流子,在扩散区积累了电荷,总的电荷量相当于图 1-11中曲线以下的部分(图-表示了区电子,p的分布)。若结正向电压加大,则多数载流子扩散加强,电荷积累由曲线变为曲线,电荷增加量为;反之,若正向电压减少,则积累的电荷将减少,这就是扩散电容效应CD,扩散电容正比于正向电流,即DI。所以结的结电容包括两部分,即Cj。一般说来,结正偏时,扩散电容起主要作用,;当结反偏时,势垒电容起主要作用,即。,1.2.5 半导体二极管 半导体二极管是由结加上引线和管壳构成的。二极管的类型很多,按制造二极管的材料分,有硅二极管和锗二极管。从管子的结构来分,有以下几种类型:,点接触型二极管。面接触型二极管。硅平面型二极管。,图 1 12 半导体二极管的结构和符号,1.二极管的特性,图 1 13 二极管的伏安特性曲线,(1)正向特性:正向电压低于某一数值时,正向电流很小,只有当正向电压高于某一值后,才有明显的正向电流。该电压称为导通电压,又称为门限电压或死区电压,用表示。在室温下,硅管的约为.V,锗管的约为.V。通常认为,当正向电压on时,二极管截止;时,二极管导通。(2)反向特性:二极管加反向电压,反向电流数值很小,且基本不变,称反向饱和电流。硅管反向饱和电流为纳安()数量级,锗管的为微安数量级。当反向电压加到一定值时,反向电流急剧增加,产生击穿。普通二极管反向击穿电压一般在几十伏以上(高反压管可达几千伏)。,(3)二极管的温度特性:二极管的特性对温度很敏感,温度升高,正向特性曲线向左移,反向特性曲线向下移。其规律是:在室温附近,在同一电流下,温度每升高,正向压降减小.V;温度每升高,反向电流约增大 1 倍。,2.二极管的主要参数(1)最大整流电流。它是二极管允许通过的最大正向平均电流。工作时应使平均工作电流小于,如超过,二极管将过热而烧毁。此值取决于结的面积、材料和散热情况。(2)最大反向工作电压。这是二极管允许的最大工作电压。当反向电压超过此值时,二极管可能被击穿。为了留有余地,通常取击穿电压的一半作为。,(3)反向电流。指二极管未击穿时的反向电流值。此值越小,二极管的单向导电性越好。由于反向电流是由少数载流子形成,所以值受温度的影响很大。(4)最高工作频率。的值主要取决于结结电容的大小,结电容越大,则二极管允许的最高工作频率越低。,(5)二极管的直流电阻。加到二极管两端的直流电压与流过二极管的电流之比,称为二极管的直流电阻,即此值可由二极管特性曲线求出,如图-所示。工作点电压为.V,电流,则,图 1-14 求直流电阻,(6)二极管的交流电阻。在二极管工作点附近,电压的微变值与相应的微变电流值之比,称为该点的交流电阻,即,d,U,r,I,=,从其几何意义上讲,当时,就是工作点处的切线斜率倒数。显然,也是非线性的,即工作电流越大,越小。交流电阻也可从特性曲线上求出,如图-所示。过点作切线,在切线上任取两点、,查出这两点间的和,则得,图1-15 求交流电阻,交流电阻rd也可利用PN结的电流方程(1-1)求出。取I的微分可得,即,式中,IDQ为二极管工作点的电流,单位取mA。式(1-5)的近似等式在室温条件下(T=300 K)成立。对同一工作点而言,直流电阻RD大于交流电阻rd;对不同工作点而言,工作点愈高,RD和rd愈低。,(1-5),1.2.6 稳压二极管,图 1-16 稳压管伏安特性和符号,图 1-17 稳压管电路,1.稳定电压Uz 稳定电压是稳压管工作在反向击穿区时的稳定工作电压。由于稳定电压随着工作电流的不同而略有变化,因而测试Uz时应使稳压管的电流为规定值。稳定电压是根据要求挑选稳压管的主要依据之一。不同型号的稳压管,其稳定电压值不同。同一型号的管子,由于制造工艺的分散性,各个管子的值也有差别。例如稳压管DW7C,其.1.V,表明均为合格产品,其稳定值有的管子是.V,有的可能是.V等等,但这并不意味着同一个管子的稳定电压的变化范围有如此大。,2.稳定电流Iz 稳定电流是使稳压管正常工作时的最小电流,低于此值时稳压效果较差。工作时应使流过稳压管的电流大于此值。一般情况是,工作电流较大时,稳压性能较好。但电流要受管子功耗的限制,即 Iz max=Pz/Uz。,3.电压温度系数 指稳压管温度变化时,所引起的稳定电压变化的百分比。一般情况下,稳定电压大于V的稳压管,为正值,即当温度升高时,稳定电压值增大。如CW,10.5V,.%/,说明当温度升高时,稳定电压增大0.09%。而稳定电压小于V的稳压管,为负值,即当温度升高时,稳定电压值减小,如CW11,.V,(.%.%),若.%,表明当温度升高时,稳定电压减小0.05%。稳定电压在V间的稳压管,其值较小,稳定电压值受温度影响较小,性能比较稳定。,4.动态电阻rz 是稳压管工作在稳压区时,两端电压变化量与电流变化量之比,即。值越小,则稳压性能越好。同一稳压管,一般工作电流越大时,值越小。通常手册上给出的值是在规定的稳定电流之下测得的。,5.额定功耗Pz 由于稳压管两端的电压值为,而管子中又流过一定的电流,因此要消耗一定的功率。这部分功耗转化为热能,会使稳压管发热。取决于稳压管允许的温升。表-给出几种稳压管的典型参数。其中DW7系列的稳压管是一种具有温度补偿效应的稳压管,用于电子设备的精密稳压源中。管子内部实际上包含两个温度系数相反的二极管对接在一起。当温度变化时,一个二极管被反向偏置,温度系数为正值;而另一个二极管被正向偏置,温度系数为负值,二者互相补偿,使、两端之间的电压随温度的变化很小。它们的电压温度系数比其它一般的稳压管约小一个数量级。如DW7C,=0.005%/。,1.2.7 二极管的应用 二极管的运用基础,就是二极管的单向导电特性,因此,在应用电路中,关键是判断二极管的导通或截止。二极管导通时一般用电压源.V(硅管,如是锗管用.V)代替,或近似用短路线代替。截止时,一般将二极管断开,即认为二极管反向电阻为无穷大。二极管的整流电路放在第十章直流电源中讨论。,1.限幅电路 当输入信号电压在一定范围内变化时,输出电压随输入电压相应变化;而当输入电压超出该范围时,输出电压保持不变,这就是限幅电路。通常将输出电压uo开始不变的电压值称为限幅电平,当输入电压高于限幅电平时,输出电压保持不变的限幅称为上限幅;当输入电压低于限幅电平时,输出电压保持不变的限幅称为下限幅。限幅电路如图-所示。改变值就可改变限幅电平。,图 1 18 并联二极管上限幅电路,V,限幅电平为V。u时二极管导通,uoV;uiV,二极管截止,uou。波形如图-19(a)所示。如果Um,则限幅电平为。u,二极管截止,uou;u,二极管导通,uo。波形图如图-()所示。如果m,则限幅电平为-E,波形图如图-19()所示。,图 1-19 二极管并联上限幅电路波形关系,图 1-20 并联下限幅电路,图 1-21 串联限幅电路,图 1-22 双向限幅电路,2二极管门电路,图 1-23 二极管“与”门电路,1.2.8 其它二极管1.发光二极管,图 1-24 发光二极管符号,2.光电二极管,图 1-25 光电二极管符号,3.光电耦合器件,图 1-26 光电耦合器件,4.变容二极管,图 1-27 变容二极管符号,1.3 半导体三极管,图 1-28 几种半导体三极管的外形,1.3.1 三极管的结构及类型,图 1 29 三极管的结构示意图和符号,无论是NPN型或是PNP型的三极管,它们均包含三个区:发射区、基区和集电区,并相应地引出三个电极:发射极(e)、基极(b)和集电极(c)。同时,在三个区的两两交界处,形成两个PN结,分别称为发射结和集电结。常用的半导体材料有硅和锗,因此共有四种三极管类型。它们对应的型号分别为:3A(锗PNP)、3B(锗NPN)、3C(硅PNP)、3D(硅NPN)四种系列。,1.3.2 三极管的三种连接方式,图 1-30 三极管的三种连接方式,1.3.3 三极管的放大作用,1.载流子的传输过程发射。(2)扩散和复合。(3)收集。,图 1 31 三极管中载流子的传输过程,2.电流分配,图 1-32 三极管电流分配,集电极电流由两部分组成:和,前者是由发射区发射的电子被集电极收集后形成的,后者是由集电区和基区的少数载流子漂移运动形成的,称为反向饱和电流。于是有(1-6),发射极电流也由两部分组成:和。为发射区发射的电子所形成的电流,是由基区向发射区扩散的空穴所形成的电流。因为发射区是重掺杂,所以忽略不计,即。又分成两部分,主要部分是,极少部分是。是电子在基区与空穴复合时所形成的电流,基区空穴是由电源提供的,故它是基极电流的一部分。,基极电流是与之差:,(1-7),(1-8),发射区注入的电子绝大多数能够到达集电极,形成集电极电流,即要求。通常用共基极直流电流放大系数衡量上述关系,用来表示,其定义为,(1-9),一般三极管的值为0.970.99。将(-)式代入(-)式,可得,(1-10),通常CBO,可将忽略,由上式可得出,(1-11),三极管的三个极的电流满足节点电流定律,即,将此式代入(1-10)式得,(1-12),经过整理后得,令,称为共发射极直流电流放大系数。当ICICBO时,又可写成,(1-13),(1-14),则,其中ICEO称为穿透电流,即,表1-3 三极管电流关系的一组典型数据,相应地,将集电极电流与发射极电流的变化量之比,定义为共基极交流电流放大系数,即,故,显然与,与其意义是不同的,但是在多数情况下,。例如,从表-知,在mA附近,设由mA变为mA,可求得,1.3.4 三极管的特性曲线,图 1 33 三极管共发射极特性曲线测试电路,1.输入特性,当不变时,输入回路中的电流与电压之间的关系曲线称为输入特性,即,图 1-34 三极管的输入特性,2.输出特性 当不变时,输出回路中的电流与电压之间的关系曲线称为输出特性,即,图 1-35 三极管的输出特性,(1)截止区。一般将的区域称为截止区,在图中为的一条曲线的以下部分。此时也近似为零。由于各极电流都基本上等于零,因而此时三极管没有放大作用。其实时,并不等于零,而是等于穿透电流ICEO。一般硅三极管的穿透电流小于A,在特性曲线上无法表示出来。锗三极管的穿透电流约几十至几百微安。当发射结反向偏置时,发射区不再向基区注入电子,则三极管处于截止状态。所以,在截止区,三极管的两个结均处于反向偏置状态。对三极管,BC。,(2)放大区。此时发射结正向运用,集电结反向运用。在曲线上是比较平坦的部分,表示当一定时,的值基本上不随CE而变化。在这个区域内,当基极电流发生微小的变化量时,相应的集电极电流将产生较大的变化量,此时二者的关系为 该式体现了三极管的电流放大作用。对于三极管,工作在放大区时.V,而。,(3)饱和区。曲线靠近纵轴附近,各条输出特性曲线的上升部分属于饱和区。在这个区域,不同值的各条特性曲线几乎重叠在一起,即当较小时,管子的集电极电流基本上不随基极电流而变化,这种现象称为饱和。此时三极管失去了放大作用,或关系不成立。一般认为CEBE,即CB时,三极管处于临界饱和状态,当CEBE时称为过饱和。三极管饱和时的管压降用CES表示。在深度饱和时,小功率管管压降通常小于.V。三极管工作在饱和区时,发射结和集电结都处于正向偏置状态。对NPN三极管,。,1.3.5 三极管的主要参数,(1)共发射极交流电流放大系数。体现共射极接法之下的电流放大作用。,(2)共发射极直流电流放大系数。由式(1-15)得,(3)共基极交流电流放大系数。体现共基极接法下的电流放大作用。,(4)共基极直流电流放大系数。在忽略反向饱和电流时,2.极间反向电流,图 1-36 三极管极间反向电流的测量,3极限参数,(1)集电极最大允许电流。,图 1-37 与IC关系曲线,(2)集电极最大允许功率损耗。当三极管工作时,管子两端电压为,集电极电流为,因此集电极损耗的功率为,图 1-38 三极管的安全工作区,4.反向击穿电压 CBO发射极开路时,集电极-基极间的反向击穿电压。CEO基极开路时,集电极-发射极间的反向击穿电压。CER基射极间接有电阻时,集电极-发射极间的反向 击穿电压。CES基射极间短路时,集电极-发射极间的反向击穿电压。EBO集电极开路时,发射极-基极间的反向击穿电压,此 电压一般较小,仅有几伏左右。上述电压一般存在如下关系:,1.3.6 温度对三极管参数的影响,1.温度对UBE的影响,2.温度对ICBO的影响 是由少数载流子形成的。当温度上升时,少数载流子增加,故CBO也上升。其变化规律是,温度每上升10,CBO约上升 1 倍。CEO随温度变化规律大致与CBO相同。在输出特性曲线上,温度上升,曲线上移。,3温度对的影响 随温度升高而增大,变化规律是:温度每升高,值增大.%。在输出特性曲线图上,曲线间的距离随温度升高而增大。综上所述:温度对、的影响,均将使随温度上升而增加,这将严重影响三极管的工作状态,