《分簇算法综述》PPT课件.ppt
分簇算法综述,review of clustering algorithms in wsn,2014年11月27日,分簇算法综述,基本思想,意义,分类比较,总结,分簇基本思想,什么是分簇基本过程簇首产生簇的形成数据传输,Sink,Cluster,Cluster head,建立和维护数据传输路径网络拓扑结构控制,分簇的意义,解决的问题优势评测指标,有效的消除数据冗余,促进网内数据融合减少了通信量和通信距离,可扩展性强,低负载,低能耗,避免冲突,负载均衡,鲁棒性强,分簇算法的分类,路由驱动LEACH,HEED以及在此基础上的改进算法等编码驱动分布式信源编码融合驱动考虑数据相关性,分簇并选择代表节点,LEACH,最经典的路由协议按轮周期性运行建簇阶段:节点以一定的概率,随机的选举成为簇首数据传输阶段:各个簇成员节点与簇首节点进行通信,再转发给sink节点,完全基于通信将地理上相近的节点划分到一簇没有具体的融合策略,缺点,Distributed Source Coding,编码+路由利用节点的边信息(side information)进行编码结合分簇策略,利用局部信息缺点每个源只压缩一次大部分编码方式需要全局的相关性信息压缩编码复杂度较高,self-coding,foreign-coding,a,b,c,a,b,c,Sr,Sr,2Sr+Se,Sr+2Se,Sr,Sr,Data Correlation-Based,基本思想建立数据模型-选择簇首节点-分簇-代表节点发送数据-local 空间相关性分簇算法定义了一个空间相关性权值,衡量节点与其邻居节点的平均相关程度选举的簇首需要满足两个条件:权值大于上界或小于下界;同时保证 邻居节点中没有其他簇首节点其他节点则根据地理空间距离选择加入最近的簇PCC,DDCD等,各类算法的比较,总结和展望,以数据为中心的传输和数据融合技术的结合形成合理的网络拓扑结构,便于管理和控制有效的感知数据的相关性,获得最佳分簇效果消除数据冗余和容错性检验兼顾均衡算法的复杂度和网络时延,参考文献,1 Liu X.A survey on clustering routing protocols in wireless sensor networksJ.Sensors,2012,12(8):11113-11153.2 Rajagopalan R,Varshney P K.Data aggregation techniques in sensor networks:A surveyC/Comm.Surveys&Tutorials,IEEE.2006.3 Luo H,Liu Y,Das S K.Routing correlated data in wireless sensor networks:A surveyJ.Network,IEEE,2007,21(6):40-47.4 Heinzelman W R,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networksC/System Sciences,2000.Proceedings of the 33rd Annual Hawaii International Conference on.IEEE,2000:10 pp.vol.2.5 Younis O,Fahmy S.HEED:a hybrid,energy-efficient,distributed clustering approach for ad hoc sensor networksJ.Mobile computing,IEEE Transactions on,2004,3(4):366-379.6 Slepian D,Wolf J K.Noiseless coding of correlated information sourcesJ.Information Theory,IEEE Transactions on,1973,19(4):471-480.7 Von Rickenbach P,Wattenhofer R.Gathering correlated data in sensor networksC/Proceedings of the 2004 joint workshop on Foundations of mobile computing.ACM,2004:60-66.8 Zheng J,Wang P,Li C.Distributed data aggregation using Slepian-Wolf coding in cluster-based wireless sensor networksJ.Vehicular Technology,IEEE Transactions on,2010,59(5):2564-2574.9 Ma Y,Guo Y,Tian X,et al.Distributed clustering-based aggregation algorithm for spatial correlated sensor networksJ.IEEE Sensors Journal,2011,11(3):641-648.10 F.Yuan,Y.Zhan,and Y.Wang,“Data density correlation degree clustering method for data aggregation in WSN,”Sensors Journal,IEEE,vol.14,no.4,pp.10891098,2014.11 C.Carvalho,D.G.Gomes,N.Agoulmine,and J.N.de Souza,“Improving prediction accuracy for WSN data reduction by applying multivariate Spatio-temporal correlation”,Sensors,vol.11,no.11,pp.10010-10037.,Thank you!,