欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《项分布与正态分布》PPT课件.ppt

    • 资源ID:5619810       资源大小:331.99KB        全文页数:28页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《项分布与正态分布》PPT课件.ppt

    (了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题/利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义),10.9 二项分布与正态分布,1相互独立事件的定义:设A,B为两个事件,如果P(AB)P(A)P(B),则称事件A与事件B相互独立(mutually independent)若A与B是相互独立事件,则 A与,与B,与 也相互独立2独立重复试验的定义在相同条件下做的n次试验称为n次独立重复试验(independentrepeated trials),3独立重复试验的概率公式一般地,在n次独立重复试验中,设事件A发生的次数为X,如果在每次试验中事件A发生的概率是p,那么在n次独立重复试验,事件A恰好发生k次的概率P(Xk).此时称随机变量X服从二项分布(binomial distribution),记作XB(n,p),并称p为成功概率,4总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线就是(或近似地是)下列函数的图象:,f(x),(x),其中实数和(0)为参数我们称,的图象为正态密度曲线5正态分布:一般地,如果对于任何实数ab,随机变量X满足P(aXb),(x)dx,则称X的分布为正态分布(normal distribution)记作N(,2)如果随机变量X服从正态分布,则记为XN(,2),6正态曲线的性质(1)曲线在x轴的上方,与x轴不相交(2)曲线是单峰的,它关于直线x对称(3)曲线在x处达到峰值(4)曲线与x轴之间的面积为1.(5)一定时,曲线的形状由确定越大,曲线越“矮胖”,总体分布越分散;越小曲线越“瘦高”总体分布越集中,1标准正态分布的平均数与标准差分别为()A0与1 B1与0 C0与0 D1与1解析:由标准正态分布的定义知答案:A,2坛子里放有3个白球,2个黑球,从中进行不放回地摸球,用A1表示第一次摸得白球,A2表示第二次摸得白球,则A1与A2是()A互斥事件 B相互独立事件 C对立事件 D不相互独立事件答案:D,3如果B,则使P(k)取最大值的k值为()A3 B4 C5 D3或4解析:采取特殊值法P(3),P(4),P(5)从而易知P(3)P(4)P(5)答案:D,4接种某疫苗后,出现发热反应的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为_(精确到0.01)解析:由已知p0.80,则P5(3)P5(4)P5(5)0.94.答案:0.94,1.事件间的“互斥”与“相互独立”是两个不同的概念,常因为将它们弄混而发生计算错误;两个相互独立事件不一定互斥即可能同时发生,而互斥事件不可能同时发生2再如三个事件两两独立,但三个条件不一定独立,【例1】3名战士射击敌机,1人专射驾驶员,1人专射油箱,1人专射发动机,命中的概率分别为、,每个人射击是独立的,任1人射中,敌机被击落,求敌机被击落的概率解答:解法一:本题等价于至少有1人射中的概率而至少有1人射中的对立事件是3人都未射中设A、B、C表示3人射击1次都击中的事件,则 表示3人射击都未击中的事件而至少有一人射中的概率为P.P()1P(A)1P(B)1P(C)则P1P(),解法二:至少有1人击中包括3种情况:1人击中;2人击中;3人都击中射击1次,以上3种情况互斥敌机被击落的概率是:P,变式1.在如右图所示的电路中,开关a,b,c开或关的概率都为,且相互独立,求灯亮的概率解答:解法一:设事件A、B、C分别表示开关a,b,c关闭,则a,b同时关合或c关合时灯亮,即AB,ABC,或 BC,A C,C之一发生,又因它们是互斥的,所以,所求概率为:,PP(AB)P(BC)P(ABC)P(A C)P(C)P(A)P(B)P()P()P(B)P(C)P(A)P()P(C)P()P()P(C)P(A)P(B)P(C)5()3,解法二:设A,B,C所表示的事件与解法一相同,若灯不亮则两条线路都不通,即c一定断开,a,b中至少有一个断开,而a,b中至少有一个断开的概率是:1P(AB)1P(A)P(B).所以两条线路皆不通的概率为:于是,灯亮的概率为P,1.独立重复试验是独立事件同时发生的特殊情况2独立重复试验,是在相同的条件下重复地、各次相互独立地进行的一种试验在这种试验中,每一次试验中只有两种结果,即某事件要么发生,要么不发生,并且在任何一次试验中发生的概率都是一样的,牢记n次独立重复试验中某事件恰好发生k次的概率计算公式,【例2】9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(1)求甲坑不需要补种的概率;(2)求3个坑中恰有1个坑不需要补种的概率;(3)求有坑需要补种的概率(精确到0.001),解答:(1)因为甲坑内的3粒种子都不发芽的概率为(10.5)3,所以甲坑不需要补种的概率为1 0.875.(2)3个坑恰有一个坑不需要补种的概率为 0.041.(3)解法一:因为3个坑都不需要补种的概率为()3,所以有坑需要补种的概率为1()30.330.,解法二:3个坑中恰有1个坑需要补种的概率为 0.287,恰有2个坑需要补种的概率为 0.041,3个坑都需要补种的概率为 0.002.所以有坑需要补种的概率为0.2870.0410.0020.330.,变式2.甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率;(2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率解答:(1)P1C0.60.4C0.60.40.230 4.(2)P21(10.6)40.974 4.,正态分布问题可利用变换公式转化为标准正态分布问题,标准正态分布可通过查表(或提供的数据)进行求解正态分布有两个重要的参数,平均数(期望、数学期望)和标准差,我们不但要明白和在统计上的意义,还要对应到正态曲线上的曲线几何意义,做到从概率、统计、曲线、函数这四个方面来把握和理解,其中后两个方面是作为数学工具来为前两个方面服务的,【例3】在N(,2)下,求F(,);F(2,2);F(3,3)解答:F()()(1)0.841 3F()()(1)1(1)10.841 30.158 7F(,)F()F()0.84130.15870.682 6F(2,2)F(2)F(2)0.954F(3,3)F(3)F(3)0.997,变式3.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100)已知成绩在90分以上(含90分)的学生有12名(1)试问此次参赛学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可供查阅的(部分)标准正态分布表(x0)P(xx0),解答:(2)设参赛学生的分数为,因为N(70,100),由条件知,P(90)1P(90)1F(90)1()1(2)10.97720.228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为 526(人),(2)假定设奖的分数线为x分,则P(x)1P(x)1F(90)1()0.095 1,即()0.904 9,查表得 1.31,解得x83.1.故设奖得分数线约为83.1分.,1古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)其中,在实际应用中P(B|A)是一种重要的求条件概率的方法2运用公式P(AB)P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立,3在解题过程中,要明确事件中的“至少一个发生”、“至多有一个发生”、“恰有一个发生”、“都发生”、“都不发生”、“不都发生”等词语的意 义,已知两个事件A、B,它们的概率分别为P(A)、P(B),那么:,【方法规律】,A、B中至少有一个发生的事件为AB;A、B都发生的事件为AB;A、B都不发生的事件为;A、B恰有一个发生的事件为;A、B中至多有一个发生的事件为.它们之间的概率关系如下表所示,4.在n次独立重复试验中,事件A恰好发生k次的概率为P(Xk),k0,1,2,n,其中p是一次试验中该事件发生的概率实际上,正好是二项式(1p)pn的展开式中的第k1项.,(本题满分12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组设每只小白鼠服用A有效的概率为,服用B有效的概率为.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.,【答题模板】,解答:设每只小白鼠服用A有效的概率为P1,服用B有效的概率为P2,一个试验组为甲类组的概率为P(A)(1)由已知条件:P(A)(2),1.独立事件同时发生的概率及独立重复试验是高考考查概率问题的重点多以解答题形式进行考查,难度多为中低档2本题考查典型的独立重复试验问题,首先计算一次试验事件发生的概率P,然后求三次独立重复试验中事件至少有一个发生的概率1P3(0)1(1P)3.,【分析点评】,点击此处进入 作业手册,

    注意事项

    本文(《项分布与正态分布》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开