欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    657正弦函数、余弦函数的性质.ppt

    • 资源ID:5613598       资源大小:189.01KB        全文页数:17页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    657正弦函数、余弦函数的性质.ppt

    1.4.2 正弦函数、余弦函数的性质,第二课时,问题提出,1.周期函数是怎样定义的?,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T就叫做这个函数的周期.,2.正、余弦函数的最小正周期是多少?函数 和 的最小正周期是多少?,3.周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究.,函数的奇偶性、单调性与最值,探究(一):正、余弦函数的奇偶性和单调性,思考1:观察下列正弦曲线和余弦曲线的对称性,你有什么发现?,思考2:上述对称性反映出正、余弦函数分别具有什么性质?如何从理论上加以验证?,正弦函数是奇函数,余弦函数是偶函数.,思考3:观察正弦曲线,正弦函数在哪些区间上是增函数?在哪些区间上是减函数?如何将这些单调区间进行整合?,正弦函数在每一个闭区间上都是增函数;在每一个闭区间 上都是减函数.,思考4:类似地,余弦函数在哪些区间上是增函数?在哪些区间上是减函数?,余弦函数在每一个闭区间上都是增函数;在每一个闭区间 上都是减函数.,思考5:正弦函数在每一个开区间(2k,2k)(kZ)上都是增函数,能否认为正弦函数在第一象限是增函数?,探究(二):正、余弦函数的最值与对称性,思考1:观察正弦曲线和余弦曲线,正、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?,思考2:当自变量x分别取何值时,正弦函数y=sinx取得最大值1和最小值1?,正弦函数当且仅当 时取最大值1,当且仅当 时取最小值-1,思考3:当自变量x分别取何值时,余弦函数y=cosx取得最大值1和最小值1?,余弦函数当且仅当 时取最大值1,当且仅当 时取最小值-1.,思考4:根据上述结论,正、余弦函数的值域是什么?函数y=Asinx(A0)的值域是什么?,思考5:正弦曲线除了关于原点对称外,是否还关于其它的点和直线对称?,正弦曲线关于点(k,0)和直线 对称.,-|A|,|A|,思考6:余弦曲线除了关于y轴对称外,是否还关于其它的点和直线对称?,余弦曲线关于点 和直线x=k对称.,理论迁移,例3 求函数,x2,2的单调递增区间.,例2 比较下列各组数的大小:,小结作业,1.正、余弦函数的基本性质主要指周期性、奇偶性、单调性、对称性和最值,它们都是结合图象得出来的,要求熟练掌握.,2.正弦函数是奇函数,余弦函数是偶函数.一般地,y=Asinx是奇函数,y=Acosx(A0)是偶函数.,作业:P40-41练习:5,6.,3.正、余弦函数有无数个单调区间和无数个最值点,简单复合函数的性质应转化为基本函数处理.,

    注意事项

    本文(657正弦函数、余弦函数的性质.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开