《空间数据的处》PPT课件.ppt
,第五章 空间数据的处理,5-1 坐标变换,5-2 图形编辑,5-3 拓扑关系的自动建立,5-4 图形的裁剪、合并 与图幅接边,5-5 空间插值,5-6 数据压缩与光滑,5-7 空间数据格式转换,一、图幅数据的坐标变换,1、比例尺变换:乘系数2、变形误差改正:通过控制点利用高次变换、二次变换和仿射变换加以改正3、坐标旋转和平移 即数字化坐标变换,利用仿射变换改正。4、投影变换:三种方法。,第五章 空间数据的处理,5-1 坐标变换,几何变换,返回,二、几何纠正,其中A、B代表二次以上高次项之和。上式是高次曲线方程,符合上式的变换称为高次变换。式中有12个未知数,所以在进行高次变换时,需要有6对以上控制点的坐标和理论值,才能求出待定系数。,第五章 空间数据的处理,5-1 坐标变换,1、高次变换,2、二次变换 当不考虑高次变换方程中的A和B时,则变成二次曲线方程,称为二次变换。二次变换适用于原图有非线性变形的情况,至少需要5对控制点的坐标及其理论值,才能解算待定系数。,3、仿射变换,实质是两坐标系间的旋转变换。设图纸变形引起x,y两个方向比例尺不同,当x,y比例尺相同时,为相似变换。,第五章 空间数据的处理,5-1 坐标变换,特性:直线变换后仍为直线;平行线变换后仍为平行线;不同方向上的长度比发生变化。求解上式中的6个未知数,需不在一直线上的3对已知控制点,由于误差,需多余观测,所以,用于图幅定向至少需要四对控制点。,返回,三、地图投影变换,1、解析变换法1)反解变换法(又称间接变换法),第五章 空间数据的处理,5-1 坐标变换,假定原图点的坐标为x,y(称为旧坐标),新图点的坐标为X,Y(称为新坐标),则由旧坐标变换为新坐标的基本方程式为:,2)正解变换法(又称直接变换法),2、数值变换法,利用若干同名数字化点(对同一点在两种投影中均已知其坐标的点),采用插值法、有限差分法或多项式逼近的方法,即用数值变换法来建立两投影间的变换关系式。,第五章 空间数据的处理,5-1 坐标变换,例如,采用二元三次多项式进行变换:,通过选择10个以上的两种投影之间的共同点,并组成最小二乘法的条件式,进行解算系数。,3、数值解析变换法,当已知新投影的公式,但不知原投影的公式时,可先通过数值变换求出原投影点的地理坐标,然后代入新投影公式中,求出新投影点的坐标。即:,第五章 空间数据的处理,5-1 坐标变换,5-2 图形编辑,图形编辑是一交互处理过程,GIS具备的图形编辑功能的要求是:1)具有友好的人机界面,即操作灵活、易于理解、响应迅速等;2)具有对几何数据和属性编码的修改功能,如点、线、面的增加、删除、修改等;3)具有分层显示和窗口操作功能,便于用户的使用。,第五章 空间数据的处理,图形编辑又叫数据编辑、数字化编辑,是指对地图资料数字化后的数据进行编辑加工,其主要的目的是在改正数据差错的同时,相应地改正数字化资料的图形。,一、编辑操作,1)结点吻合(Snap)或称结点匹配、结点咬合,结点附和。方法:A、结点移动,用鼠标将其它两点移到另一点;B、鼠标拉框,用鼠标拉一个矩形,落入该矩形内的结点坐标通过求它们的中间坐标匹配成一致;C、求交点,求两条线的交点或其延长线的交点,作为吻合的结点;D、自动匹配,给定一个吻合容差,或称为咬合距,在图形数字化时或之后,将容差范围内的结点自动吻合成一点。,第五章 空间数据的处理,5-2 图形编辑,一般,若结点容差设置合理,大多数结点能够吻合在一起,但有些情况还需要使用前三种方法进行人工编辑。,1、结点的编辑,2)结点与线的吻合,编辑的方法:A、结点移动,将结点移动到线目标上。B、使用线段求交;C、自动编辑,在给定容差内,自动求交并吻合在一起。,第五章 空间数据的处理,5-2 图形编辑,A,B,D,C,E,在数字化过程中,常遇到一个结点与一个线状目标的中间相交。由于测量或数字化误差,它不可能完全交于线目标上,需要进行编辑,称为结点与线的吻合。,3)需要考虑两种情况A、要求坐标一致,而不建立拓扑关系;如 高架桥(不需打断,直接移动)B、不仅坐标一致,且要建立之间的空间关联关系;如 道路交叉口(需要打断),无结点,有结点,4)清除假结点(伪结点),第五章 空间数据的处理,5-2 图形编辑,有些系统要将这种假结点清除掉(如ARC/INFO),即将目标A 和B合并成一条,使它们之间不存在结点;但有些系统并不要求清除假结点,如Geostar,因为它们并不影响空间查询、分析和制图。,由仅有两个线目标相关联的结点成为假结点。,A,B,2、图形编辑,包括用鼠标增加或删除一个点、线、面实体,移动、旋转一个点、线、面实体。1)删除和增加一个顶点 删除顶点,在数据库中不用整体删除与目标有关的数据,只是在原来存储的位置重写一次坐标,拓扑关系不变。增加顶点,则操作和处理都要复杂。不能在原来的存储位置上重写,需要给一个新的目标标识号,在新位置上重写,而将原来的目标删除,此时需要做一系列处理,调整空间拓扑关系。2)移动一个顶点 移动顶点只涉及某个点的坐标,不涉及拓扑关系的维护,较简单。3)删除一段弧段 复杂,先要把原来的弧段打断,存储上原来的弧段实际被删除,拓扑关系需要调整和变化.,第五章 空间数据的处理,5-2 图形编辑,j,k,j,k,a,b,L3,L1,L2,3、数据检查与清理,数据检查指拓扑关系的检查,结点是否匹配,是否存在悬挂弧段,多边形是否封闭,是否有假结点。要求系统能将有错误或不正确的拓扑关系的点、线和面用不同的颜色和符号表示出来,以便于人工检查和修改。,第五章 空间数据的处理,5-2 图形编辑,数据清理则是用自动的方法清除空间数据的错误.例如给定一个结点吻合的容差使该容差范围内的结点自动吻合在一起,并建立拓扑关系。给定悬挂弧段容差,将小于该容差的短弧自动删除。在Arc/info中用Data Clean 命令,在Geostar中选择整体结点匹配菜单。,4、撤消与恢复编辑 Undo,Redo功能是必要的。但功能的实现是困难的。当撤消编辑,即恢复目标,要恢复目标的标识和坐标、拓扑关系。这一处理过程相当复杂.因此,有些GIS不在图形编辑时实时建立和维护拓扑关系,如Arc/Info等,而在图形编辑之后,发Clean 或Build命令重新建立拓扑关系。这样,在每次进行任何一次编辑,都要重新Clean 或Build,对用户不便。,N1,N2,A2,N1,N2,A2,二、关键算法,可设一捕捉半径D(通常为35个象素,这主要由屏幕的分辩率和屏幕的尺寸决定)。,第五章 空间数据的处理,5-2 图形编辑,1、点的捕捉,设光标点为S(x,y),某一点状要素的坐标为A(X,Y),若S和A的距离d小于D则认为捕捉成功,即认为找到的点是A,否则失败,继续搜索其它点。,乘方运算影响了搜索的速度,因此,把距离d的计算改为:,捕捉范围由圆改为矩形,这可大大加快搜索速度。,2、线的捕捉,设光标点坐标为S(x,y),D为捕捉半径,线的坐标为(x1,y1),(x2,y2),(xn,yn)。通过计算S到该线的每个直线段的距离d。.若min(d1,d2,dn-1)D,则认为光标S捕捉到了该条线,否则为未捕捉到。加快线捕捉的速度的方法:1)在实际的捕捉中,可每计算一个距离di就进行一次比较,若diD,则捕捉成功,不需再进行下面直线段到点S的距离计算了。2)把不可能被光标捕捉到的线,用简单算法去除。3)对于线段也采用类似的方法处理。4)简化距离公式:点S(x,y)到直线段(x1,y1),(x2,y2)的距离d的计算公式为:,第五章 空间数据的处理,5-2 图形编辑,简化为:,3、面的捕捉,实际上就是判断光标点S(x,y)是否在多边形内,若在多边形内则说明捕捉到。判断点是否在多边形内的算法主要有垂线法或转角法。垂线法的基本思想是从光标点引垂线(实际上可以是任意方向的射线),计算与多边形的交点个数。若交点个数为奇数则说明该点在多边形内;若交点个数为偶数,则该点在多边形外。加快速度的方法:1)找出该多边形的外接矩形,若光标点落在该矩形中,才有可能捕捉到该面,否则放弃对该多边形的进一步计算和判断。2)对不可能有交点的线段应通过简单的坐标比较迅速去除。3)运用计算交点的技巧。,第五章 空间数据的处理,5-2 图形编辑,4、图形编辑的数据组织空间索引,为加速检索,需要分层建索引,主要方法有格网索引和四叉树索引。1)格网索引,第五章 空间数据的处理,5-2 图形编辑,a、每个要素在一个或多个网格中b、每个网格可含多个要素c、要素不真正被网格分割,,对象索引,空间索引,2)四叉树索引,第五章 空间数据的处理,5-2 图形编辑,线性四叉树和层次四叉树都可以用来进行空间索引。,C,A,B,G,F,D,E,A、线性四叉树,先采用Morton或Peano码,再根据空间对象覆盖的范围进行四叉树分割。B、层次四叉树,需要记录中间结点和父结点与子结点之间的指针,若某个地物覆盖了哪个中间结点,还要记录该空间对象的标识。,12,15,GB,层1,边长4,层2,边长2,层3,边长1,建立了索引文件后的图形编辑,不仅要修改原始的空间数据,而且要修改相关的索引文件。,5-3 拓扑关系的自动建立,一、点线拓扑关系的自动建立,第五章 空间数据的处理,a1,a2,N1,N2,N3,N4,a3,a1,a2,N1,N2,N3,a1,a2,N1,N2,N3,N4,a3,a4,(b),(a),(c),结点-弧段表,弧段-结点表,1、在图形采集和编辑中实时建立,2、在图形采集和编辑之后自动建立,其基本原理与前类似。,二、多边形拓扑关系自动建立,1、链的组织1)找出在链的中间相交的情况,自动切成新链;2)把链按一定顺序存储,并把链按顺序编号。2、结点匹配1)把一定限差内的链的端点作为一个结点,其坐标值取多个端点的平均值。2)对结点顺序编号。3、检查多边形是否闭合通过判断一条链的端点是否有与之匹配的端点来进行.,5-3 拓扑关系的自动建立,第五章 空间数据的处理,多边形不闭合的原因:1)由于结点匹配限差的问题,造成应匹配的端点未匹配;2)由于数字化误差较大,或数字化错误,这些可以通过图形编辑或重新确定匹配限差来确定。3)还可能这条链本身就是悬挂链,不需参加多边形拓扑,这种情况下可以作一标记,使之不参加下一阶段拓扑建立多边形的工作。,4、建立多边形,1)概念a、顺时针方向构多边形:指多边形是在链的右侧。b、最靠右边的链:指从链的一个端点出发,在这条链的方向上最右边的第一条链,a的最右边的链为d c、多边形面积的计算,5-3 拓扑关系的自动建立,第五章 空间数据的处理,当多边形由顺时针方向构成时,面积为正;反之,面积为负。,2)建立多边形的基本过程,1 顺序取一个结点为起始结点,取完为止;取过该结点的任一条链作为起始链。2 取这条链的另一结点,找这个结点上,靠这条链最右边的链,作为下一条链。3 是否回到起点:是,已形成一多边形,记录之,并转4;否,转2。4取起始点上开始的,刚才所形成多边形的最后一条边作为新的起始链,转2;若这条链已用过两次,即已成为两个多边形的边,则转1。,5-3 拓扑关系的自动建立,第五章 空间数据的处理,例:1从P1开始,起始链定为P1P2,从P2点算起,P1P2最右边的链为P2P5;从P5算起,P2P5最右边 的链为P5P1,.形成的多边形为P1P2P5P1。2从P1开始,以P1P5为起始链,形成的多边形为P1P5P4P1。3从P1开始,以P1P4为起始链,形成的多边形为P1P4P3P2P1。4 这时P1为结点的所有链均被使用了两次,因而转向下一个结点P2,继续进行多边形追踪,直至所有的结点取完。共可追踪出五个多边形,即A1、A2、A3、A4、A5。,5、岛的判断,找出多边形互相包含的情况.1、计算所有多边形的面积。2、分别对面积为正的多边形和面积为负的多边形排序。3、从面积为正的多边形中,顺序取每个多边形,取完为止。若负面积多边形个数为0,则结束。4、找出该多边形所包含的所有面积为负的多边形,并把这些面积为负的多边形加入到包含它们的多边形中,转3。正面积多边形包含的负面积多边形是关键.1、找出所有比该正面积多边形面积小的负面积多边形。2、用外接矩形法去掉不可能包含的多边形。即负面积多边形的外接矩形不和该正面积多边形的外接矩形相交或被包含时,则不可能为该正面积多边形包含。3、取负面积多边形上的一点,看是否在正面积多边形内,若在内,则被包含;若在外,则不被包含。6、确定多边形的属性多边形以内点标识。内点与多边形匹配后,内点的属性常赋于多边形.,5-3 拓扑关系的自动建立,第五章 空间数据的处理,单多边形被追踪两次,p1,p2,p3,p1,p2,p3,-p1,-p2,-p3,一、图形的裁剪-开窗处理,1、方式:正窗:提取窗口内的数据。开负窗:提取窗口外的数据子集。矩形窗和多边形窗。2、算法:包括点、线、面的窗口裁剪-计算机图形学(矢量、编码、中点分割裁剪法)。而不规则多边形开窗-相当于多边形叠置处理。,5-4 图形的裁剪、合并和图幅接边,第五章 空间数据的处理,二、图形合并-数据文件合并 一幅图内的多层数据合并在一起;或将相邻的多幅图的同一层数据合并.涉及到空间拓扑关系的重建。对于多边形,由于同一个目标在两幅图内已形成独立的多边形,合并时,需去除公共边界,属性合并,具体算法,删去共同线段。实际处理过程是先删除两个多边形,解除空间关系后,删除公共边,再重建拓扑。,p,L1,p,A,A,p,L1,p,A,A,p,L1,p,A,A,去除公共边界,属性合并,三、图幅接边形成无缝数据库,几何裂缝:指由数据文件边界分开的一个地物的两部分不能精确地衔接。-几何接边逻辑裂缝:同一地物地物编码不同或具有不同的属性信息,如公路的宽度,等高线高程等。-逻辑接边,第五章 空间数据的处理,5-4 图形的裁剪、合并和图幅接边,2、几何接边,人工接边,接边,1、识别或提取相邻图幅。-要求图幅编号合理,直接移动,突变,回缩2-3个点减少突变,3、逻辑接边,第五章 空间数据的处理,5-4 图形的裁剪、合并和图幅接边,1)检查同一地物在相邻图幅的地物编码和属性值是否一致,不一致,进行人工编辑。2)将同一地物在相邻图幅的空间数据在逻辑上连在一起。,A3,A,A1,A2,图3,图2,图1,总目标文件,a、索引文件,建立双向指针。,b、关键字,空间操作的方法。,逻辑接边,图3,图2,图1,空间插值:,内插:在已观测点的区域内估算未观测点的数据的过程;外推:在已观测点的区域外估算未观测点的数据的过程.-预测。,第五章 空间数据的处理,5-5 空间插值,一、边界内插 首先假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。边界内插的方法之一是泰森多边形法。泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。,内插,外推,二、趋势面分析,是一种多项式回归分析技术。多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合,拟合时假定数据点的空间坐标X、Y为独立变量,而表示特征值的Z坐标为因变量。1、当数据为一维时,1)线性回归:,第五章 空间数据的处理,5-5 空间插值,2)二次或高次多项式:,2、数据是二维的,二元二次或高次多项式,三、局部内插,利用局部范围内的已知采样点的数据内插出未知点的数据。,第五章 空间数据的处理,5-5 空间插值,1、线性内插,将内插点周围的3个数据点的数据值带入多项式,即可解算出系数a0、a1、a2。,2、双线性多项式内插,将内插点周围的4个数据点的数据值带入多项式,即可解算出系数a0、a1、a2、a3。,当数据是按正方形格网点布置:,3、双三次多项式(样条函数)内插,是一种分段函数,每次只用少量的数据点,故内插速度很快;样条函数通过所有的数据点,故可用于精确的内插;可用于平滑处理。双三次多项式内插的多项式函数为:,第五章 空间数据的处理,5-5 空间插值,将内插点周围的16个点的数据带入多项式,可计算出所有的系数。,16个点,四、移动平均法,在局部范围(或称窗口)内计算n个数据点的平均值.,第五章 空间数据的处理,5-5 空间插值,二维平面的移动平均法也可用相同的公式,但位置Xi应被坐标矢量Xi代替。窗口的大小对内插的结果有决定性的影响。小窗口将增强近距离数据的影响;大窗口将增强远距离数据的影响,减小近距离数据的影响。,加权移动平均法:i是采样点i对应的权值,加权平均内插的结果随使用的函数及其参数、采样点的分布、窗口的大小等的不同而变化。通 常使用的采样点数为68点。对于不规则分布的采样点需要不断地改变窗口的大小、形状和方向,以获取一定数量的采样点。,当观测点的相互位置越近,其数据的相似性越强;当观测点的相互位置越远,其数据的相似性越低。,一、数据压缩,1、DouglasPeucker,第五章 空间数据的处理,5-6 数据压缩与光滑,图形显示输出,数据存储,数据压缩,光滑,矢量数据压缩栅格数据压缩,压缩效果好,但必须在对整条曲线数字化完成后才能进行,且计算量较大;,2、垂距法,每次顺序取曲线上的三个点,计算中间点与其它两点连线的垂线距离d,并与限差D比较。若dD,则中间点去掉;若dD,则中间点保留。然后顺序取下三个点继续处理,直到这条线结束。,第五章 空间数据的处理,5-6 数据压缩与光滑,3、偏角法 4、间隔取点法,压缩算法好,可在数字化时实时处理,每次判断下一个数字化的点,且计算量较小;,二、曲线光滑(拟合),是假象曲线为一组离散点,寻找形式较简单、性能良好的曲线解析式。,第五章 空间数据的处理,5-6 数据压缩与光滑,插值方式:曲线通过给定的离散点。如拉格朗日插值,三次样条曲线逼近方式:曲线尽量逼近给定离散点。如贝塞尔和B样条曲线。,一、矢量向栅格转换,点:简单的坐标变换 线:线的栅格化 面:线的栅格化+面填充 面(多边形)的填充方法 1、内部点扩散法(种子扩散法)2、扫描法3、射线法4、复数积分法 3、边界代数算法,第五章 空间数据的处理,5-7 空间数据格式转换,二、栅格向矢量转换,从栅格单元转换为几何图形的过程为矢量化;(一)要求(矢量化过程应保持):1)栅-矢转换为拓扑转换,即保持实体原有的连通性、邻接性等;2)转换实体保持正确的外形。(二)方法方法一,实际应用中大多数采用人工矢量化法,如扫描矢量化,该法工作量大,成为GIS数据输入、更新的瓶颈问题之一。方法二,程序转化转换(全自动或半自动)过程为:,第五章 空间数据的处理,5-7 空间数据格式转换,遥感影象图,栅格分类图,边界提取,二值化,编辑,矢量跟踪,数据压缩,原始线划图,二值化,细化,分类图,扫描,预处理,拓扑化,1、边界提取2、二值化 3、二值图像的预处理,4、细化:1)剥皮法 2)骨架法5、跟踪 6、拓扑化,