《时域测量》PPT课件.ppt
第5章 时域测量,5.1 概述 5.2 CRT显示原理 5.3 通用示波器 5.4 取样示波器 5.5 波形存储及显示技术 5.6 示波器的基本测试技术,5.1 概述,5.1.1 示波器的分类 根据示波器对信号的处理方式的不同可分为模拟、数字两大类:1 模拟示波器采用模拟方式对时间信号进行处理和显示。2 数字示波器对信号进行数字化处理后再显示。,1 模拟示波器,模拟示波器可分为通用示波器、多束示波器、取样示波器、记忆示波器和专用示波器等。通用示波器采用单束示波管,又可分为单踪、双踪、多踪示波器。多束示波器采用多束示波管,荧光屏上显示的每个波形都由单独的电子束扫描产生。取样示波器可以用较低频率的示波器测量高频信号。记忆示波器采用有记忆功能的示波管,实现模拟信号的存储、记忆和反复显示。专用示波器是能够满足特殊用途的示波器,又称特种示波器。,2 数字示波器,数字示波器将输入信号数字化(时域取样和幅度量化)后,经由D/A转换器再重建波形。数字示波器具有记忆、存贮被观察信号功能,又称为数字存贮示波器。根据取样方式不同,数字示波器又可分为实时取样、随机取样和顺序取样三大类。,5.1.2 主要技术指标,1频率响应(频带宽度),当示波器输入不同频率的等幅正弦信号时,屏幕上对应于基准频率fR的显示幅度随频率下降3dB时的上限频率fH与下限频率fL之间的宽度。,5.1.2 主要技术指标,2时域响应(瞬态响应),上升时间(tr):方波的前沿从基本幅度A的10%上升到90%所需的时间;,表示放大电路在方波脉冲输入信号作用下的过渡特性。,下降时间(tf):方波的后沿从下垂后幅度A1的90%下降到10%所需的时间;,上冲(so):上升沿之后的幅度起伏。是脉冲波前沿的上冲量b与A之比的百分数,5.1.2 主要技术指标,2时域响应(瞬态响应),预冲(sp):脉冲波阶跃之前的预冲量d与A之比的百分数,下冲(sn):脉冲后沿的下冲量f与A之比的百分数,下垂():脉冲波平顶部分的倾斜幅度e 与A之比的百分数,5.1.2 主要技术指标,2时域响应,示波器的上限截至频率fH(单位MHz)与其自身的上升时间tr(单位:ns)的关系:由于示波器中的放大器是线性网络,放大器的频带宽度fB与上升时间tr之间有确定的内在关系:当频带宽度(单位:MHz)给定时,上升时间(单位:ns)为:,5.1.2 主要技术指标,3扫描速度 无扩展情况下,亮点在屏幕x轴方向移动单位长度1cm(或1格)所表示的时间,单位为“t/cm”或“t/div”,时间t可为s、ms或s。扫描速度越高(“t/cm”愈小),表明示波器能够展开高频信号或窄脉冲波形的能力愈强;为了观测缓慢变化的信号,要求示波器具有较低的扫描速度。因此,示波器扫描速度的范围愈宽愈好。,5.1.2 主要技术指标,4偏转灵敏度偏转灵敏度指在输入信号作用下,光点在荧光屏上的垂直(Y)方向移动1cm(即1格)所需的电压值(峰-峰值),单位为“V/cm”、“mV/cm”(或“V/div”、“mV/div”)。偏转灵敏度表示示波器Y通道的放大/衰减能力。偏转灵敏度值越小,表示灵敏度越高。,5.1.2 主要技术指标,5输入阻抗 当被测信号接入示波器时,输入阻抗Zi形成被测信号的等效负载。反映了示波器对被测电路的影响-希望电阻值越大,电容值越小。6输入方式 即输入耦合方式,一般有直流(DC)、交流(AC)和接地(GND)三种,可通过示波器面板选择。7、扫描方式 示波器中的扫描电压是一种线性时基扫描。线性时基扫描可分为连续扫描和触发扫描两种方式。,5.1.2 主要技术指标,只在触发信号的激励下才开始扫描,每完成一次扫描后就处于等待状态,直到下一次触发信号到来再进行扫描。,回扫后没有等待时间,适用于观察连续信号。,5.2 CRT显示原理,5.2.1 CRT(Cathode Ray Tube)CRT主要由电子枪、偏转系统和荧光屏三部分组成。,电子枪,荧光屏,偏转系统,1 电子枪,电子枪的作用:发射电子并形成很细的高速电子束。电子枪的组成:由灯丝F、阴极K、栅极G1和前加速级G2和阳极A1、A2组成。G1、G2和A1、A2 构成一个对电子束的控制系统。通过调节G1对K的负电位可控制电子束的强弱,从而调节光点的亮度,即进行“辉度”控制。调节A1的电位器称为“聚焦”旋钮,可调节G2与A1和A1与A2之间的电位;调节A2电位的旋钮称为“辅助聚焦”。,1 电子枪,电子束聚焦的原理:电子从阴极K发射,经G1、G2、A1、A2聚焦和加速后进入偏转系统。,电子束聚焦示意图,1 电子枪,电子在电子枪中的运动轨迹。,电子束在电子枪内产生两次会聚,又称双凸透镜系统,2 偏转系统,示波管的偏转系统由两对相互垂直的平行金属板组成,分别称为垂直偏转板和水平偏转板。当有外加电压作用时,偏转板之间形成电场;在偏转电场作用下,电子束打向由X、Y偏转板共同决定的荧光屏上的某个坐标位置。为了示波器有较高的测量灵敏度,Y偏转板置于靠近电子枪的部位,而X偏转板在Y的右边。,2 偏转系统,电子束在偏转电场作用下的偏转距离与外加偏转电压成正比:,l为偏转板的长度;L为偏转板右侧边缘到屏幕的距离;d为偏转板间距;UA2为第二阳极与阴极间的电压。,l,L,Uy,2 偏转系统,示波管的Y轴偏转灵敏度(单位为V/cm):表示亮点在荧光屏上偏转1cm所需要加于偏转板上的电压值。偏转灵敏度值越小,示波管越灵敏。注意:偏转灵敏度是与外加偏转电压大小无关的常数。,2 偏转系统,提高偏转灵敏度的方法:延长偏转板长度l 增加偏转板与荧光屏间距L 减小偏转极板间的距离d 减小第二阳极电压UA2 问题:会导致亮点及辉度减弱;解决办法:在荧光屏与偏转系统之间设置后加速极,以提高电子打在荧光屏上的速度,从而增加亮点辉度(PDA系统)。,2 偏转系统,后加速极A3是在示波管锥体内部涂一层螺旋形石墨带,形成连续的分压器,使电位均匀分布。穿过偏转系统以后的电子逐步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;石墨层涂在整个锥体上,能起到屏蔽作用;电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些二次电子。,P183 图5.2-5,3 荧光屏,荧光屏将电信号变为光信号,是示波管的波形显示部分。当电子束停止轰击荧光屏时,光点仍能保持一定的时间,这种现象称为“余辉效应”。根据余辉时间的长短分为三种:短余辉(10uslms);适于显示高频信号;中余辉(lms0.ls);长余辉(0.1-1s)适于观察缓慢变化的信号。通用示波器一般采用中余辉管。在使用示波器时,应避免电子束长时间的停留在荧光屏的一个位置,否则将使荧光屏受损。因此在示波器开启后不使用的时间内,可将“辉度”调暗。,5.2.2 波形显示的基本原理,1显示随时间变化的图形(1)Ux、Uy为固定电压时,有下面四种情况:,光点出现在荧光屏的中心位置。,光点仅在垂直方向偏移:Uy为正电压时,光点从荧光屏的中心往垂直方向上移;Uy为负电压时,光点从荧光屏的中心往垂直方向下移。,(a)Ux=0;Uy=0,(b)Ux=0;Uy=常量,5.2.2 波形显示的基本原理,1显示随时间变化的图形(续),光点仅在水平方向偏移:Ux为正电压时,光点从荧光屏的中心往水平方向右移;Ux为负电压时,光点从荧光屏的中心往水平方向左移。,当两对偏转板上同时加固定的正电压时,光点位置应为两电压的矢量合成。,(d)Ux=常量;Uy=常量,(c)Ux=常量;Uy=0,5.2.2 波形显示的基本原理,1显示随时间变化的图形(续)(2)X、Y偏转板上分别加变化电压,有下面两种情况:,仅在垂直偏转板的两板间加正弦变化的电压,则光点只在荧光屏的垂直方向来回移动,出现一条垂直线段。,5.2.2 波形显示的基本原理,1显示随时间变化的图形(续),仅在水平偏转板的两板间加锯齿电压,则光点只在荧光屏的水平方向来回移动,出现一条水平线段。,5.2.2 波形显示的基本原理,1显示随时间变化的图形(续)(3)Y偏转板加正弦波信号电压,X偏转板加锯齿波电压,荧光屏上将显示出被测信号随时间变化的一个周期的波形曲线。,5.2.2 波形显示的基本原理,2显示任意两个变量之间的关系 示波器两个偏转板上都加正弦电压时显示的图形称为李沙育(Lissajous)图形,这种图形在相位和频率测量中常会用到。,若两信号的初相相同,且在X、Y方向的偏转距离相同,在荧光屏上画出一条与水平轴呈45度角的直线。,5.2.2 波形显示的基本原理,2显示任意两个变量之间的关系(续),若两信号的初相相差90度,且在X、Y方向的偏转距离相同,在荧光屏上画出的图形为圆。,5.2.2 波形显示的基本原理,3扫描的概念 如果在X偏转板上加一个随时间线性变化的电压,垂直偏转板不加电压,那么光点在水平方向的偏移距离为,比例系数Sx称为示波管的X轴偏转灵敏度。光点在锯齿波作用下扫动的过程称为“扫描”,能实现扫描的锯齿波电压称为扫描电压,光点自左向右的连续扫动称为“扫描正程”,自荧光屏的右端迅速返回左端起扫点的过程称为“扫描逆程”。,5.2.2 波形显示的基本原理,4同步的概念(1)Tx=nTy(n为正整数):荧光屏上将稳定显示n个周期的被测信号波形。,n=2,如果扫描电压周期Tx与被测电压周期Ty保持Tx=nTy的关系,则称扫描电压与被测电压“同步”。,5.2.2 波形显示的基本原理,4同步的概念(续)(2)TxnTy(n为正整数),即不满足同步关系时,显示的波形不稳定。,5.2.2 波形显示的基本原理,5连续扫描和触发扫描 扫描电压是连续的方式称为连续扫描。当欲观测脉冲信号,尤其是占空比很小的脉冲时,采用连续扫描存在一些问题:选择扫描周期等于脉冲重复周期时,难以看清脉冲波形的细节。,5.2.2 波形显示的基本原理,5连续扫描和触发扫描(续)选择扫描周期等于脉冲底宽时,观测者不易观察波形,而且扫描的同步很难实现。,5.2.2 波形显示的基本原理,5连续扫描和触发扫描(续)触发扫描时,使扫描脉冲只在被测脉冲到来时才扫描一次;没有被测脉冲时,扫描发生器处于等待工作状态。,5.2.2 波形显示的基本原理,6扫描过程的增辉 为了使回扫产生的波形不在荧光屏上显示,可以设法在扫描正程期间,给示波器增辉。,若不增辉将产生回扫线。,5.3 通用示波器,5.3.1 通用示波器的组成,5.3 通用示波器,5.3.2 通用示波器的垂直通道1输入电路:包括衰减器和输入选择开关。(1)衰减器,最佳补偿条件:,过补偿:,欠补偿:,改变分压比的开关为示波器的垂直灵敏度粗调开关,在面板上用“V/cm”标记。,衰减比:,5.3 通用示波器,(2)输入耦合方式 输入耦合方式设有AC、GND、DC三档选择开关。观察交流信号时,置“AC”档。确定零电压时,置“GND”档。观测频率很低的信号或带有直流分量的交流信号 时,置“DC”档。,5.3.2 通用示波器的垂直通道,2前置放大器 前置放大器将信号适当放大,从中取出内触发信号,并具有灵敏度微调、校正、Y轴移位、极性反转等控制作用。Y前置放大器大都采用差分放大电路将单端输入信号变成双端对称输出信号,输出一对平衡的交流电压。若在差分电路的输入端输入不同的直流电位,相应的Y偏转板上的直流电位和波形在Y方向的位置也会改变。可通过调节“Y轴位移”旋钮,调节直流电位以改变被测波形在屏幕上的位置。,5.3.2 通用示波器的垂直通道,3延迟线 触发扫描时,扫描的开始时间总是滞后于被观测脉冲一段时间,这样,脉冲的上升过程就无法被完整地显示出来。,左图为没有延迟线时屏幕上显示的脉冲。,5.3.2 通用示波器的垂直通道,3延迟线(续)延迟线的作用就是把加到垂直偏转板上的脉冲信号延迟一段时间,以保证在屏幕上扫描出包括上升时间在内的脉冲全过程。延迟线的输入级需采用低输出阻抗电路驱动,而输出级则采用低输入阻抗的缓冲器。,5.3.2 通用示波器的垂直通道,3延迟线(续)100MHz以下的宽带示波器采用双芯螺旋导线式延迟线:特性阻抗为2100,延迟时间约75ns/m;随着频率的升高会对信号延迟产生相位失真,同时介质损耗剧烈增加,引起信号失真;200-300MHz宽带示波器采用同轴射频电缆作为延迟线:特性阻抗为75,延迟时间5ns/m。,5.3.2 通用示波器的垂直通道,4Y输出放大器 Y输出放大器是将延迟线传来的被测信号放大到足够的幅度,用以驱动示波管的垂直偏转系统,使电子束获得Y方向的满偏转。Y输出放大器应具有稳定的增益、较高的输入阻抗、足够宽的频带、较小的谐波失真。Y输出放大器大都采用推挽式放大器,有利于提高共模抑制比。可采用改变负反馈的方法改变放大器的增益(面板上的“5”或“10”开关)。,5.3.3 通用示波器的水平通道,水平通道包括触发电路、扫描电路和水平放大器等部分,其主要任务:产生随时间线性变化的扫描电压;放大到足够的幅度;输出到水平偏转板,使光点在荧光屏的水平方向达到满偏转。,5.3.3 通用示波器的水平通道,1触发电路 触发电路的作用:为扫描信号发生器提供符合要求的触发脉冲。包括触发源选择、触发耦合方式选择、触发方式选择、触发极性选择、触发电平选择和触发放大整形等电路。,5.3.3 通用示波器的水平通道,1触发电路(续)(1)触发源选择 内触发(INT):将Y前置放大器输出(延迟线前的被测信号)作为触发信号,适用于观测被测信号。外触发(EXT):用外接的、与被测信号有严格同步关系的信号作为触发源,用于比较两个信号的同步关系。电源触发(LINE):用50Hz的工频正弦信号作为触发源,适用于观测与50Hz交流有同步关系的信号。,5.3.3 通用示波器的水平通道,1触发电路(续)(2)触发耦合方式“DC”直流耦合:用于接入直流或缓慢变化的触发信号。“AC”交流耦合:用于观察从低频到较高频率的信号。“AC低频抑制”耦合:用于观察含有低频干扰的信号。“HF REJ”高频抑制耦合:用于抑制高频成分的耦合。,5.3.3 通用示波器的水平通道,1触发电路(续)(3)扫描触发方式选择(TRIG MODE)常态(NORM)触发方式:指有触发源信号并产生了有效的触发脉冲时,荧光屏上才有扫描线。自动(AUTO)触发方式:有连续扫描锯齿波电压输出,荧光屏上总能显示扫描线。电视(TV)触发方式:是在原有放大、整形电路基础上插入电视同步分离电路实现的,以便对电视信号(如行、场同步信号)进行监测与电视设备维修。,5.3.3 通用示波器的水平通道,1触发电路(续)(4)触发极性选择和触发电平调节 触发极性和触发电平决定触发脉冲产生的时刻,并决定被显示信号的起始点。触发极性是指触发点位于触发源信号的上升沿还是下降沿。触发电平是指触发脉冲到来时所对应的触发放大器输出电压瞬时值。,5.3.3 通用示波器的水平通道,(4)触发极性选择和触发电平调节,5.3.3 通用示波器的水平通道,1触发电路(续)(5)放大整形电路 放大整形电路的作用是对触发信号进行放大、整形,以满足触发信号的要求。整形电路的基本形式是电压比较器,当输入的触发源信号与通过“触发极性”和“触发电平”选择的信号之差达到某一设定值时,比较电路翻转,输出矩形波,然后经过微分整形,变成触发脉冲。,5.3.3 通用示波器的水平通道,2扫描发生器环 扫描发生器环又叫时基电路,常由积分器、扫描闸门及比较释抑电路组成。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)闸门电路产生快速上升或下降的闸门信号;闸门信号启动扫描发生器工作,产生锯齿波电压;把闸门信号送到增辉电路,以便在扫描正程加亮扫描的光迹。释抑电路稳定扫描锯齿波的形成;防止干扰和误触发的作用;确保每次扫描都在触发源信号的同样的起始电平上开始以获得稳定的图象。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(1)扫描方式选择:包括连续扫描和触发扫描。(2)扫描门 1)控制积分器扫描。2)起正程加亮作用。3)使双踪示波器工作于交替状态。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(2)扫描闸门常用的闸门电路有双稳态、施密特触发器和隧道二极管整形电路。,施密特触发器构成的闸门电路,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(3)积分器 密勒(Miller)积分器是通用示波器中应用最广的一种积分电路。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(3)积分器 积分器产生的锯齿波电压被送入X放大器中放大,再加至水平偏转板。荧光屏上单位长度所代表的时间为示波器的扫描速度(s/cm),x:光迹在水平方向偏转的距离;t:偏转x距离所对应的时间。在示波器中通常改变R或C值作为“扫描速度”粗调,用改变E值作为“扫描速度”微调。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(4)比较和释抑电路 在比较电路中,输入电压与预置的参考电平进行比较,当输入电压等于预置的参考电平时,输出端电位产生跳变,并把它作为控制信号输出。它决定扫描的终止时刻。释抑电路在扫描逆程开始后,关闭或抑制扫描闸门,使“抑制”期间扫描电路不再受到同极性触发脉冲的触发。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(4)比较和释抑电路 比较和释抑电路与扫描闸门、积分器构成一个闭合的扫描发生器环。扫描闸门的输入接受三个方面的信号:“稳定度”电位器提供的直流电位;来自释抑电路的释抑信号;来自触发电路的触发脉冲。,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(4)比较和释抑电路 1)触发扫描过程:,5.3.3 通用示波器的水平通道,2扫描发生器环(续)(4)比较和释抑电路2)连续扫描 在此扫描方式下,通过“稳定度”调节,使闸门电路的静态工作电平高于上触发电平E1,则不论是否有触发脉冲,扫描闸门都将输出闸门信号。扫描闸门仍然受比较和释抑电路的控制,以控制扫描正程的结束,从而实现扫描电压和被测电压的同步。,5.3.3 通用示波器的水平通道,3水平放大器 其基本作用是选择X轴信号,并将其放大到足以使光点在水平方向达到满偏的程度。X放大器的输入端置于“内”时,X放大器放大扫描信号;置于“外”时,水平放大器放大由面板上X输入端直接输入的信号。,5.3.4 通用示波器的其他电路,1高、低压电源 分别用于示波器的高、中压和直流供电。2Z轴的增辉与调辉 增辉:将闸门信号放大,使显示的波形正程加亮。调辉:加外调制信号或时标信号,使屏幕显示的波形发生相应地变化。3校准信号发生器 可产生幅度和频率准确的基准方波信号,为仪器本身提供校准信号源。,5.3.5 示波器的多波形显示,1多线示波 利用多枪电子管来实现的。测试时各通道、各波形之间产生的交叉干扰可以减少或消除,可获得较高的测量准确度。2多踪示波 在单线示波的基础上增加了电子开关,利用分时复用原理,分别把多个垂直通道的信号轮流接到Y偏转板上,最终实现多个波形的同时显示。,5.3.5 示波器的多波形显示,2多踪示波“Y1”通道(CH1)、“Y2”通道(CH2)和叠加方式(CH1+CH2)都只显示一个波形。,5.3.5 示波器的多波形显示,2多踪示波(续)交替方式(ALT):适合于观察高频信号。,5.3.5 示波器的多波形显示,2多踪示波(续)断续方式(CHOP):适用于被测信号频率较低的情况。(将两个被测信号分成很多小段轮流显示),5.3.5 示波器的多波形显示,2多踪示波(续)相位误差:p214 当被测信号的频率为电子转换频率的0.5的奇次倍时,信号波形图象的相位相差180度。解决方法:荧光屏上显示的两个信号的频率比为整数;被测信号频率与电子开关转换频率之比为整数倍关系;被测信号频率较低,尽量选用断续方式。,5.3.6 双扫描显示,双时基示波器有两个独立的触发和扫描电路,特别适用于在观察一个脉冲序列的同时,仔细观察其中一个或部分脉冲的细节。p215,5.3.6 双扫描显示,为了能同时观测脉冲列的全貌及其中某一部分的细节,设立电子开关,把两套扫描电路的输出交替地接入X放大器。这称为A延迟B。把A、B扫描门产生的增辉脉冲叠加起来,形成合成增辉信号,用它来给A通道增辉,则A通道所显示的脉冲列中,对应B扫描期间的那个脉冲3被加亮,这称为B加亮A。包括上两种方式的,被称为自动双扫描。,5.4 取样示波器,5.4.1 概述 pp220 1取样的基本概念取样就是从被测波形上取得样点的过程。取样分为实时取样和非实时取样两种。从一个信号波形中取得所有取样点,来表示一个信号波形的方法称为实时取样。从被测信号的许多相邻波形上取得样点的方法称为非实时取样,或称为等效取样。,5.4.1 概述,1取样的基本概念实时取样示意图,5.4.1 概述,1取样的基本概念非实时取样示意图,5.4.1 概述,2取样原理 核心电路取样保持器示意图 若tp很窄,则可认为离散取样信号幅度等于该次取样瞬间ui(t)的瞬时值。两个取样脉冲的时间间隔为,由于波形包络所经历的时间变长了,故可用低频示波器显示较高频率的信号。,5.4.1 概述,2取样原理(续)步进间隔t与信号最高频率fh应满足取样定理非实时取样只适用于周期性信号。顺序进行的取样称为顺序取样;否则称为随机取样。,5.4.1 概述,3 显示原理 顺序取样示波器中的水平扫描信号为阶梯波电压,阶梯持续时间,阶梯数对应屏幕上显示的不连续的光点数。,5.4.2 取样示波器的组成及工作原理,1.取样示波器的基本框图,5.4.2 取样示波器的组成及工作原理,2.取样示波器的垂直通道 垂直通道由延迟线、取样电路、延长门和Y放大器等电路组成,最关键的电路是取样电路,它产生正比于取样值的阶梯电压。,闭环取样电路组成框图,5.4.2 取样示波器的组成及工作原理,2.取样示波器的垂直通道(续)第一个取样脉冲到来时,取样门闭合,输入的被测信号对取样电容Cs充电;然后该电压被送到交流放大器A放大,在延长门闭合期间对保持电容Cm充电;最后保持电压经过反馈电路送回取样电容Cs,故取样电容Cs上最终得到的电压为(K为取样门的传输函数)。若kA=1,则取样电路的输出电压值正比于输入电压的取样值。,5.4.2 取样示波器的组成及工作原理,2.取样示波器的垂直通道(续)第二个取样脉冲到来时,取样门闭合,输入的被测信号与cs上的电压ui1之差给取样电容Cs充电,充电的电压值经过传递系数K和增益A后,将在保持电容上与前一次的输出信号叠加,得到uo2为取样电路的输出是由离散的、与被测信号成正比的阶梯波构成的。,5.4.2 取样示波器的组成及工作原理,3.取样示波器的水平通道X通道主要包括触发、放大、分频单元、快斜波发生器、比较器、阶梯波发生器和X放大器。,阶梯波发生器框图,5.4.2 取样示波器的组成及工作原理,3.取样示波器的水平通道(续)步进脉冲发生器的工作过程,5.4.2 取样示波器的组成及工作原理,4.取样示波器的主要参数(1)取样示波器的带宽要提高取样示波器的带宽,取样门用元件的高频特性要足够好;其次取样脉冲本身要足够窄。取样脉冲通常有两种形式:规则脉冲和尖三角脉冲。取样门的最高工作频率为(为取样脉冲底宽),即与取样脉冲底边的宽度成反比。,5.4.2 取样示波器的组成及工作原理,4.取样示波器的主要参数(续)(2)取样密度 指电路扫描时,在示波器屏幕X轴上显示的被测信号每格所对应的取样点数,常用每厘米的光点数来表示。屏幕上的光点总数为(Us为X方向最大偏转电压;us为阶梯波每级上升的电压)。使Us变小,可使总点数增加,即取样密度变大;但取样点过多可能导致波形闪烁。,5.4.2 取样示波器的组成及工作原理,4.取样示波器的主要参数(续)(3)等效扫速 等效扫速定义为被测信号经历时间与水平方向展宽的距离比。在取样示波器中,虽然在屏幕上显示n个亮点需要n(mT+t)的时间,但它等效于被测信号经过了nt的时间。,Us为X方向最大偏转电压;N为X轴偏转格数;为快斜波的斜率。,5.5 波形存储及显示技术,5.5.1 波形模拟存储技术和记忆示波器 模拟记忆示波器是利用记忆示波管的波形记忆(存储)特性实现波形较长时间的存储,其核心是记忆示波管:,5.5.1 波形模拟存储技术和记忆示波器,示波管内有两种电子枪,一种称为写入枪,另一种称为读出枪。在记录波形之前,首先对存储栅网进行清除,清除网上的电子。写入枪发射电子束,实现了存储功能。读出时,在那些被写入枪电子束扫描过的区域,读出枪发出的泛射电子可以通过栅网而到达荧光屏,从而显示波形。,5.5.2 数字存储示波器,1数字存储示波器的组成原理,5.5.2 数字存储示波器,1数字存储示波器的组成原理(续)当处于存储工作模式时,其工作过程一般分为存储和显示两个阶段。在存储工作阶段,将模拟信号转换成数字化信号,在逻辑控制电路的控制下依次写入到RAM中。在显示工作阶段,将数字信号从存储器中读出转换成模拟信号,经垂直放大器放大加到CRT的Y偏转板。同时,CPU的读地址计数脉冲加至D/A转换器,得到一个阶梯波扫描电压,驱动CRT的X偏转板,,5.5.2 数字存储示波器,2数字存储式波器的工作方式(1)数字存储器的功能 随机存储器RAM包括信号数据存储器、参考波形存储器、测量数据存储器和显示缓冲存储器四种。(2)触发工作方式 1)常态触发 同模拟示波器基本一样。2)预置触发 可观测触发点前后不同段落上的波形。,5.5.2 数字存储示波器,2数字存储式波器的工作方式(续)(3)测量与计算工作方式 数字存储示波器对波形参数的测量分为自动测量和手动测量两种。一般参数的测量为自动测量,特殊值的测量使用手动光标进行测量。(4)面板按键操作方式 数字存储示波器的面板按键分为立即执行键和菜单键两种。,5.5.2 数字存储示波器,3数字存储示波器的显示方式(1)存储显示 适于一般信号的观测。(2)抹迹显示 适于观测一长串波形中在一定条件下才会发生的瞬态信号。(3)卷动显示 适于观测缓变信号中随机出现的突发信号。,5.5.2 数字存储示波器,3数字存储示波器的显示方式(4)放大显示 适于观测信号波形细节。(5)XY显示,5.5.2 数字存储示波器,3数字存储示波器的显示方式(6)显示的内插 插入技术可以解决点显示中视觉错误的问题。主要有线性插入和曲线插入两种方式。,5.5.2 数字存储示波器,4数字存储示波器的特点(1)波形的采样/存储与波形的显示是独立的,可以无闪烁地观测极慢变化信号;对于观测极快信号来说,数字存储示波器可采用低速显示。(2)能长时间地保存信号:便于观察单次出现的瞬变信号。(3)先进的触发功能:不仅能显示触发后的信号,而且能显示触发前的信号。,5.5.2 数字存储示波器,4数字存储示波器的特点(续)(4)测量准确度高:采用了晶振和高分辨率A/D转换器。(5)很强的数据处理能力:内含微处理器,能自动实现多种波形参数的测量与显示;还具有自检与自校等多种自动操作功能。(6)外部数据通信接口:可以很方便地将存储的数据送到计算机或其他的外部设备,进行更复杂的数据运算和分析处理。,5.5.2 数字存储示波器,5数字存储示波器的主要技术指标(1)最高取样速率 指单位时间内取样的次数,用每秒钟完成的A/D转换的最高次数来衡量。实时取样速率(N为每格的取样数;t/div为扫描一格所用的时间即扫描时间因数)。(2)存储带宽(B)与取样速率密切相关。,5.5.2 数字存储示波器,5数字存储示波器的主要技术指标(续)(3)分辨力(pp230)包括垂直分辨力(电压分辨力)和水平分辨力(时间分辨力)。垂直分辨力与A/D转换器的分辨力相对应,常以百分数或屏幕每度的分级数(级div)来表示。水平分辨率由存储器的容量决定,常以屏幕每格含多少个取样点或用百分数来表示。,5.5.2 数字存储示波器,5数字存储示波器的主要技术指标(续)(4)存储容量 由采集存储器(主存储器)的最大存储容量来表示。(5)读出速度 读出速度是指将数据从存储器中读出的速度,常用(时间)/div来表示。,5.5.2 数字存储示波器,6数字存储示波器的主要部件及要求(1)高速A/D转换器 1)并行比较式ADC采用直接比较原理,转换速度快,有闪烁式A/D(Flash A/D)之称。,5.5.2 数字存储示波器,6数字存储示波器的主要部件及要求(续)(1)高速A/D转换器2)并串式ADC,5.5.2 数字存储示波器,6数字存储示波器的主要部件及要求(续)(2)存储器 可将高速采集的数据分路变为低速数据进行存储以降低对存储速度的要求。,5.5.2 数字存储示波器,6数字存储示波器的主要部件及要求(续)(3)控制系统 单处理器系统:仅有一个CPU,加上在CPLD或FPGA等数字逻辑的管理下进行工作的高速时钟电路。多处理器系统:由多个CPU完成数据采集、数据处理、显示、人机控制等功能。,5.5.2 数字存储示波器,7.高速信号采集技术(1)CCD器件和A/D相结合对被测信号进行非实时取样后借助CCD进行信号的模拟存储。然后将CCD中存储的信号读出并进行A/D转换,其结果存入RAM。,5.5.2 数字存储示波器,7.高速信号采集技术(续)(2)扫描交换管和A/D相结合 将高速信号存储在扫描变换管的靶面上,然后通过电子扫描靶面以图像信号输出的形式取出存储信号,并经A/D转换将数字化结果存入存储器。(3)等效取样和A/D相结合 采用等效取样的方法将高速信号变为低速信号,对此低速信号进行采集、存储就可能完成测量任务。,5.5.2 数字存储示波器,7.高速信号采集技术(续)(4)多通道组合 将多个通道的采集能力均用于一个通道对被测信号进行采集。,5.6 示波器的基本测试技术,5.6.1 示波器的选用(1)根据要显示的信号数量,选择单踪或双踪示波器。(2)根据被测信号的频率特点选择。(3)根据被测信号的重现方式选择。(4)根据被测信号是否含有交直流成分选择。(5)根据被测信号的测试重点选择。,5.6.2 示波器的正确使用,使用注意事项(1)检查电源电压。(2)通电预热后再调整各旋钮,同时注意各旋钮应先大致旋在中间位置。(3)亮度不宜开得过高,且亮点不宜长期停留在固定位置,不观测波形时,应该将辉度调暗。(4)输入信号电压的幅度应控制在示波器的最大允许输入电压范围内。,5.6.2 示波器的正确使用,2通用示波器的主要技术性能(1)Y轴通道 包括偏转灵敏度、频带宽度、输入阻抗、最大输入电压、工作方式及Y通道延迟时间等。(2)X轴通道包括时基因数、工作方式、触发方式、耦合方式及外触发最大输入电压等。(3)主机包括显示尺寸、后加速阳极电压、校准信号等。,5.6.2 示波器的正确使用,3通用示波器的面板示意图(1)CH1(X)通道1:垂直输入端。(2)CH2(Y)通道2:垂直输入端。(3)VOLTS/DIV输入衰减器。(4)VERT MODE:垂直方式选择开关。(5)SOURCE触发源选择开关。(6)COUPLING触发信号耦合方式开关。(7)TIME/DIV扫描时间选择开关。,5.6.2 示波器的正确使用,3通用示波器的面板示意图(续)(8)SWEEP MODE扫描方式选择开关。(9)EXT TRIG和EXT HOR外触发和外水平共用输入端。(10)LEVEL HOLD OFF触发电平和释抑时间双重控制旋钮。(11)X-Y方式。,5.6.2 示波器的正确使用,3通用示波器的面板示意图(续),5.6.2 示波器的正确使用,4探头的正确使用常见探头为低电容高电阻探头:,5.6.2 示波器的正确使用,4探头的正确使用(续)低电容探头的应用使输入阻抗大大提高,特别是输入电容大大减小。但是,将使示波器的灵敏度有所下降。探头和示波器是配套使用的,不能互换,否则将会导致分压比误差增加或高频补偿不当。低电容高电阻探头的校正方法是以良好的方波电压通过探头加到示波器,微调电容C以达到出现良好的方波。,5.6.3 用示波器测量电压,1直流电压的测量(1)测量原理 利用被测电压在屏幕上呈现的直线偏离时间基线(零电平线)的高度与被测电压的大小成正比的关系进行的。为被测直流电压值,h为被测直流信号线的电压偏离零电平线的高度;为示波器的垂直灵敏度,k为探头衰减系数。,VDC,5.6.3 用示波器测量电压,1直流电压的测量(续)(2)测量方法 1)将示波器的垂直偏转灵敏度微调旋钮置于校准位置(CAL)。2)将待测信号送至示波器的垂直输入端。3)确定零电平线。4)将示波器的输入耦合开关拨向“DC”档,确定直流电压的极性。5)读出被测直流电压偏离零电平线的距离h。6)计算被测直流电压值。,5.6.3 用示波器测量电压,1直流电压的测量(续)例1 示波器测直流电压及垂直灵敏度开关示意图如图所示,h=4cm、V/cm、若k=10:1,求被测直流电压值。,(V),5.6.3 用示波器测量电压,2交流电压的测量(1)测量原理 为被测交流电压值(峰-峰值);h为被测交流电压波峰和波谷的高度或任意两点间的高度;为示波器的垂直灵敏度;为探头衰减系数。(2)测量方法 垂直偏转灵敏度微调旋钮置于校准位置;接入待测信号;输入耦合开关置于“AC”;调节扫描速度使波形稳定显示;调节垂直灵敏度开关;读出被测交流电压波峰和波谷的高度;计算被测交流电压的峰-峰值。,VP-P,Ky,Dy,5.6.3 用示波器测量电压,2交流电压的测量(续)例2 示波器正弦电压如图所示,h=8cm、V/cm、若K=1:1,求被测正弦信号的峰-峰值和有效值。正弦信号的峰-峰值为正弦信号的有效值为,V,5.6.4 用示波器测量时间和频率,1测量周期和频率(1)测量原理 被测交流信号的周期(x为被测交流信号的一个周期在荧光屏水平方向所占距离;Dx为示波器的扫描速度;Kx为X轴扩展倍率。周期的倒数即为频率。,5.6.4 用示波器测量时间和频率,1测量周期和频率(续)(2)测量方法 1)将示波器的扫描速度微调旋钮置于“校准”位置。2)将待测信号送至示波器的垂直输入端。3)将示波器的输入耦合开关置于“AC”位置。4)调节扫描速度开关,记录 Dx值。5)读出被测交流信号的一个周期在荧光屏水平方向所占的距离x。6)计算被测交流信号的周期。,5.6.4 用示波器测量时间和频率,1测量周期和频率(续)例3 荧光屏上的波形如图所示,信号一周期7cm,扫描速度开关置于“10ms/cm”位置,扫描扩展置于“拉出10”位置,求被测信号的周期。,ms,5.6.4 用示波器测量时间和频率,2测量时间间隔(1)测量同一信号中任意两点A与B的时间间隔 A与B的时间间隔(xA-B 为A与B的时间间隔在荧光屏水平方向所占距离,Dx为示波器的扫描速度),5.6.4 用示波器测量时间和频率,2测量时间间隔(续)(2)若A、B两点分别为脉冲波前后沿的中点,则所测时间间隔为脉冲宽度,如下图示。,5.6.4 用示波器测量时间和频率,2测量时间间隔(续)(3)采用双踪示波器可测量两个信号的时间差。读出两被测信号起始点时间的水平距离。,5.6.5 用示波器测量相位,1用双踪示波法测量相位 将欲测量的两个信号A和B分别接到示波器的两个输入通道。利用荧光屏上的坐标测出信号的一个周期在水平方向上所占的长度 xT。再测量两波形上对应点之间的水平距离x,则两信号的相位差为,5.6.5 用示波器测量相位,1用双踪示波法测量相位(续)用这种方法测相位差时应该注意,只能用其中一个波形去触发另一路信号。,5.6.5 用示波器测量相位,2用李沙育图形法测量频率或相位(1)测量频率 示波器工作于X-Y方式下,将频率已知的信号与频率未知的信号加到示波器的两个输入端,调节已知信号的频率,使荧光屏上得到李沙育图形,由此可测出被测信号的频率。和 分别为水平线、垂直线与李沙育图形的交点数;、分别为示波器Y和X信号的频率。李沙育图形存在关系:,5.6.5 用示波器测量相位,2用李沙育图形法测量频率或相位(续)例4 如图所示的李沙育图形,已知X信号频率为6MHz,问Y信号的频率是多少?,(MHz),5.6.5 用示波器测量相位,2用李沙育图形法测量频率或相位(续)(2)测量相位差把比较相位差的两个同频率、同幅度的正弦信号分别送入示波器的Y通道和X通道,使示波器工作在X-Y方式,这时示波器的屏幕上会显示出椭圆波形。由椭圆上的坐标可求得两信号的相