欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《数学建模概论》PPT课件.ppt

    • 资源ID:5519290       资源大小:330.49KB        全文页数:35页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《数学建模概论》PPT课件.ppt

    数学建模教案,长安大学理学院,董安国,前言,应用和创新是数学建模的特点,也是素质教育的灵魂;不论用数学方法解决哪类实际问题,还是与其他学科想结合形成交叉学科,首先的和关键的一步是用数学的语言表述所研究的对象,即建立数学模型。在高科技时代,特别是计算机技术迅速发展的今天,计算和建模正成为数学科学技术转化的主要途径。本课程旨在提高学生数学应用能力和数学知识的获取能力。,一 数学建模和数学的关系,数学的定义:数学作为一门研究现实世界数量关系和空间形式的科学,它的内容是从实际中抽象出来,与实际想脱离的,但在它生产和发展的历史长河中,一直是和人们生活的实际需要密切相关。数学具有三大特点:1 抽象性2 严密性3 应用的广泛性数学的任务和发展动力应用是数学的主要任务,也是数学发展的主要动力。,数学建模的定义:数学建模是指用数学的语言和方法对实际问题进行近似地刻划和描述,数学建模并不是新事物,自从有了数学并用数学去解决问题时,就有了数学建模。纵观人类历史上进行过的三次重大的科学技术革命,每一次都是渗透着数学的应用,都是数学建模过程。但将数学建模作为一门专门的学科和课程历史还很短。数学建模教学的培养目标:1 培养翻译能力2 应用已学到的数学方法和思想进行综合应用和分析,并能学习一点新的数学知识,并能理解合理的抽象和简化,特别是进行数学分析的重要性3 发展联想能力4 逐渐发展形成一种洞察力5 熟练使用技术手段,数学理论,实际,实际,来源于,服务于,学到的数学,课堂学习,数学建模,推动发展,数学家几千年的努力,无限多的问题,有限多的知识,必须发挥主观能动性学会数学建模的方法,二数学建模竞赛(MCM)由来和规则,1985年以前美国只有一种大学生数学竞赛(普特南数学竞赛)。1985年在美国创办了一个名为数学建模竞赛(Mathematical in Modeling,缩写为);一年一度的数学建模竞赛是一种彻底公开的竞赛。每年只有若干个来自不受限制的任何领域的实际问题,学生以三人组成一个队的形式参赛,在小时内任选一题,完成该实际问题的数学建模全过程,并就问题的重述、简化和假设及合理性的论述、数学建模的论述与求解、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。由专家组成的评阅组进行评阅,评出优秀论文。在竞赛期间不得与队外的任何人讨论,但可以利用任何资料软件。,三数学假模的一般步骤,建模要经过哪些步骤并没有一定的模式,通常与问题的性质、建模目的等有关。下面介绍的是机理分析方法建模的一般过程,如下图所示.,模型准备,模型假设,模型构成,模型求解,模型检验,模型分析,模型应用,模型准备 了解问题的实际背景,明确建模的目的,搜集必要的信息如现象、数据等,尽量弄清对象的主要特征形成一个比较清晰的“问题”,由此初步确定用哪一类模型。情况明才能方法对。在模型准备阶段要深入调查研究,虚心向实际工作者请教,尽量掌握第一手资料。模型假设 根据对象的特征和建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设。对于建模的成败这是非常重要和困难的一步。假设作的不合理或太简单,会导致错误或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使你很难或无法继续下一部的工作。常常需要再合理与简化之间作出恰当的折衷。模型构成 根据所作的假设,用数学的语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型,如优化模型、微分方程模型、差分方程模型、图的模型等。建模时应遵循的一个原则是:尽量采用简单的数学工具,因为你的模型总希望更多的人了解和使用,而不是只供少数专家欣赏。模型求解 可以采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术。模型分析 对求解结果进行数学上的分析,如结果的误差分析、统计分析、模型对数据的敏感性分析、对假设的强健性分析等。模型检验 把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,检验模型的合理性和适用性。如果结果与实际不符,问题常常出在模型假设上,应该修改、补充假设,重新建模,如图中的虚线所示。这一步对于模型是否真的有用非常关键,要以严肃认真的态度对待。有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意。模型应用 应用的方式与问题性质、建模目的及最终的结果有关,本课程一般不讨论这个问题。,数学建模的过程分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如下图所示。,现实对象的信息,现实对象的解答,数学模型的解答,数学模型,表述(归纳),求解,(演绎),解答,验证,四 数学建模全过程,表述是将现实问题“翻译”成抽象的数学问题,属于归纳法。数学模型的求解则属于演绎法。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。因为任何事物的本质都要通过现象来反映,必然要透过偶然来表露,所以正确的归纳不是主观、盲目的,而是有客观基础的,但也往往是不精细的、带感性的,不易直接检验其正确性。演绎利用严格的逻辑推理,对解释现象、作出科学预见具有重大意义,但是它要以归纳的结论作为公理化形式的前提,只能在这个前提下保证其正确性。因此,归纳和演绎是辨证统一的过程:归纳是演绎的基础,演绎是归纳的指导。解释是把数学模型的解答“翻译”回到现实对象,给出分析、预报、决策或者控制的结果。最后,作为这个过程的重要的一环,这些结果需要用实际的信息加以验证。上图揭示了现实对象和数学模型的关系。一方面,数学模型是将现象加以归纳、抽象的产物,它源于现实,又高于现实。另一方面,只有当数学建模的结果经受住现实对象的检验时,才可以用来知道实际,完成实践理论实践这一循环。,五数学模型的特点和建模能力的培养,通过前面的学习,我们看到用建模方法解决实际问题,首先是用数学语言表述问题,即构造模型,其次才是用数学工具求解构成的模型。用数学语言表述问题,包括模型假设、模型构造等,除了需要广博的知识和足够的经验之外,特别需要丰富的想象力和敏锐的洞察力。想象力指人们在原来知识的基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工处理,创造出新的形象,是一种形象思维活动。洞察力知人们在充分占有资源的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用哪些方法解决面临的问题,以及不同方法的优劣作出判断。比类方法和理想化方法是建模中常用的方法,它们的运用与想象力、洞察力有密切关系。类比法注意到研究对象与已熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。选择什么对象进行类比,比较哪些相似的属性,在一定程度上是靠想象进行的。将交通流与水流类比来建立交通流模型是这方面的例子。理想化方法是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理想状态,以期更本质地揭示对象的固有规律。在一定条件下把物体看作质点,把实际位置看成数学上的点、线等理想化的结果。,直觉和灵感在数学建模中往往也起着不可忽略的作用。直觉是人们对新事物本质的极敏锐的领悟、理解或推断,灵感指在人们有意识或下意识思考过程中迸发出来的猜测、思路或判断。二者都具有突发性,且思维者本人往往说不清它的来路和道理。当由于各种限制利用已有知识难以对研究对象作出有效的推理和判断时,凭借相似、类比、猜测,外推等思维方式及不完整、不连续、不严密的,带启发性的直觉和灵感,去“战略性”地认识对象,是人类创造性思维的特点之一,也是人脑比按程序逻辑工作的计算机、机器人的高明之处。直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰难探索对各种思维方法运用娴熟。相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素。掌握建模这门艺术,培养想象力和洞察力,需要作好这样两条:第一,学习、分析、评价、改造别人作过的模型。首先弄懂它,分析为什么这么作,然后找出它的优缺点,并尝试改进的方法。第二,要亲自动手,踏实地做几个实际题目。为了这个目的,本课程主要将采取实例研究方法。,第一章初等模型,所谓初等模型就是可以通过初等数学或高等数学中的一些基本的方法建立的模型。以下主要是希望通过一些初等模型的分析和讲解,首先让学生体会到如何将一个实际问题归结为数学问题,并用数学的原理进行分析求解;其次是让学生体会数学建模的一般步骤;再是让学生懂得编程计算在数学建模中的重要性。,问题跑步问题某人在任何5min的时间区间内均不能恰好跑500m,问10min 内能否恰好跑1000m。,提示:,问题方桌问题 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,就可以使四只脚同时着地,放稳了。这个看来似乎与数学无关的现象能用数学语言给以表述,并用数学工具来证实吗?,问题商人过河问题三名商人各带一个随从乘船过河,一只小船只能容纳两人,有他们自己划船。随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?,模型构成 记,分别表示地k次渡河前此岸的,定义为状态,,商人数和随从数,,显然允许状态集为,分别表示地k次渡船上的商人数和随从数,,为决策变量;允许决策集为,状态转移方程,问题相识问题在6人的集会上,假定认识是相互的,则总能找到或者3个人相互都认识,或者3个人谁都不认识谁。请问这个结论正确吗?问题棋子颜色的变化问题任意拿出黑白两种颜色的棋子共8个,排成如下图所示的一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子。在重复以上的过程,这样放一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢?,问题双层玻璃的功效问题你是否注意到北方城镇的一些建筑物的窗户是双层的,即窗户上装两层的玻璃且中间留有一定空隙,如下图所示,两层厚度为d的玻璃夹着一层厚度为l的空气。据说这样做是为了保暖,即减少室内向室外的热量流失。我们要建立一个模型来描述热量通过窗户的传导(即流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗(如下图,玻璃厚度为2d)的热量传导进行对比,对双层玻璃窗能够减少多少热量损失给出定量分析结果。,记双层窗内层玻璃的外侧温度是,,外层玻璃的内侧温度是,,玻璃的热传导系数是,,空气的热传导系数是,故单位时间单位面积的热量传导(热量流失)为,由上式可以得,两者之比为,显然,由物理学的相关知识,有,问题水的流出时间问题一横截面积为常数,高为的水池内盛满了水,由池底一横截面积为的小孔放水。设水从小孔流出的速度为,在任意时刻的水面高度和将水放空所需的时间。,问题公平的席位分配问题某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。若学生代表会议设20个席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位。现在丙系有6名学生转入甲乙两系,各系人数如表1第2列所示。仍按比例(表中第三列)分配席位时出现了小数(表中第4列),在将取得整数的10席分配完毕后,三系同意剩下的1席参照所谓惯例分给比例中小数最大的丙系,于是三系仍分别占有10,6,4席(表中第5列)。,因为有20个席位的代表会议在表决提案时可能出现10:10的局面,会议决定下一届增加1席。他们按照上述方法重新分配席位,计算结果见表6,7列。显然这个结果对丙系太不公平,因为总席位增加1席,而丙系却由4席减为3席。请提出新的分配方法。,这种席位分配的方法称为Q值法,通过分析构造指标如下:,初等模型及其计算,划艇比赛的成绩问题 赛艇是一种靠桨手划桨前进的小船,分单人艇、双人艇、四人艇,八人艇四种。各种艇虽然大小不同,但形状相似。比较了各种赛艇1964-1970年四次2000m比赛的最好成绩(包括1964年和1968年的两次奥运会和两次世界锦标赛),见表5第1到6列,发现它们之间有相当一致的差别,他认为比赛成绩与桨手数量之间存在着某中联系,于是建立了一个模型来解释这种关系。,上机实验题:一利用二分法计算下列方程的根sinx=x2 ex+1=5+x+3x2二问题的仿真计算三问题的计算(包括值法和你设计的方法),问题分析:赛艇前进时受到的阻力主要是艇浸没部分与水之间的摩擦力。艇靠桨手的力量克服阻力保持一定的速度前进。桨手越多,划艇前进的动力越大。但是艇与桨手总重量的增加会使艇浸没面积加大,于是阻力加大。建模目的是寻找桨手数量与比赛成绩之间的数量规律。,从上表中可以看出,桨手数增加时,艇的尺寸,及艇重都随之增加,但比值和变化不大。若假定是常数,即各种艇的形状一样,则可得到艇浸没面积与排水体积之间的关系。若假定是常数,则可得到艇和桨手的总重量与桨手数之间的关系。此外还需对桨手体重、划桨功率、阻力与艇速的关系等方面作出简化且合理的假定,才能运用合适的物理定律建立需要的模型。,模型假设各种艇的集合形状相同,为常数;艇重与桨手数成正比。这是艇的静态特征。艇速是常数,前进时受的阻力与成正比(是艇浸没部分面积)。这是艇的动态特征。所有桨手的体重都相同,记作;在比赛中每个桨手的划浆功率保持不变,且与成正比。,模型构成有名桨手的艇的总功率np 与阻力f 和速度v的乘积成正比,即,(1),由假设2,3,代入(1)式可得,(2),由假设1,各种艇几何形状相同,若艇浸没面积S与艇的某特征尺寸c的平方成正比,则艇的排水体积A必与c的立方成正比于是有,又根据艇重w0与桨手数n成正比,所以艇和桨手的总重量也与成正比,即,(4),而由阿基米德定律,艇排水体积与总重量w 成正比,即,(5),由(3),(4),(5)有,(6),将(6)代入(2)式,当w是常数时得到,(7),因为比赛成绩t(时间)与v成反比,所以就得到了,(8),模型检验设t与n的关系为,对上式两边取对数,得到,利用最小二乘法根据所给数据拟合上式,得到,可以看出(8)式与这个结果吻合得相当好。,录象机计数器问题老式的录象机上都有计数器,而没有计时器,一些录音机也有类似的情况。这种计数器有什么用呢,让我们从这样一个问题开始:一盘表明180分钟的录象带从头转到尾,用时184分钟,计数器从0000变到6061。在某一次使用中录象带已经转过大半,计数器读数为4450,问剩下的一段还能否录下一小时的节目。如果计数器读数随着录象带的转动是均匀增加的,那么由于4450已经显著地超过6041的三分之二,即录象带已经转了两小时多,所以显然不能再录一小时的节目。但是你细心地观察一下就会发现,读数并非均匀增长而是先快后慢,这样,回答上面的问题就需要知道读数器读数与录象带转过的时间之间的关系。本节目的就是建立表述这个关系的数学模型。,首先,我们要找出计数器读数(记n)与录象带转过的时间(记t)之间的关系,即建立一个数学模型,模型假设1 录象带的线速度是常数v;2 计数器读数n与右轮盘转的圈数(m)成正比,m=kn,k为比例系数;3 录象带厚度是常数w,空右轮盘半径为r;4 初始时刻t=0时n=0,模型建立由录象带转m圈的长度和线速度的关系得,考虑到w比r小得多及m=kn易得,当然还可以用其他的办法得到此式。将上式的两个系数分别记为a和b即得,通过实验数据(如下表)经拟合得 a=0.00000261,b=0.0145这样题目中的问题就可以解决了。,

    注意事项

    本文(《数学建模概论》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开