欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《拉格朗日方程》PPT课件.ppt

    • 资源ID:5515686       资源大小:754.50KB        全文页数:29页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《拉格朗日方程》PPT课件.ppt

    动力学普遍方程 拉格朗日方程,拉格朗日方程,引 言,将达朗伯原理和虚位移原理结合起来推导出动力学普遍方程和拉格朗日方程。动力学普遍方程中系统的运动是直角坐标来描述的,而拉格朗日方程是用广义坐标来描述系统的运动,两者都是用来解决非自由质点系的动力学问题,它是用分析的方法解决动力学问题的出发点,因此它是分析力学的基础。对于解决复杂的非自由质点系的动力学问题,应用拉格朗日方程往往要比用动力学普遍方程简便得多。,1.1,动 力 学 普 遍 方 程,设由n个质点组成的质点系,由达朗伯原理知,在质点系运动的任一瞬时,任一质点 上作用的主动力,约束反力 及其惯性力 三者构成形式上的平衡力系,即,对该质点系应用虚位移原理,为此,取质点系的任何一组虚位移,则得,设该质点受的是理想约束,则有,故,1.1,动 力 学 普 遍 方 程,即,将上式写成解析式,则有,以上两式是由达朗伯原理和虚位移原理相结合而得到的结果,称为动力学普遍方程,也称达朗伯拉格朗日方程。动力学普遍方程可以叙述如下:在理想约束条件下,在任一瞬时作用在质点系上所有的主动力和虚加的惯性力,在该瞬时质点系所处位置的任何虚位移上的元功之和等于零。,1.1,动 力 学 普 遍 方 程,例1 图示滑轮系统中,动滑轮上悬挂着重为 的重物,绳子绕过定滑轮后,挂着重为 的重物,设滑轮和绳子的重量不计,求重为 的重物下降的加速度。,解:以系统为研究对象,系统具有理想约束,系统所受的主动力为、,假想加上惯性力、。,其中,给系统以虚位移 和,由动力学普遍方程,得,由运动学关系,代入上式得,1.1,动 力 学 普 遍 方 程,例2 有两个半径皆为r的轮子,中心用连杆相连,在倾角为 的斜面上作纯滚动,如图。设轮重皆为P,对轮心的转动惯量皆为J,连杆重量为Q,求连杆运动的加速度。,解:以系统为研究对象,系统具有理想约束,系统所受的主动力有它们的重力。假想加上惯性力,如图。,其中,1.1,动 力 学 普 遍 方 程,给连杆以平行斜面移动的虚位移,则轮子有相应的转动虚位移,根据动力学普遍方程,即,1.2,拉 格 朗 日 方 程,一、拉格朗日方程,设有n个知点组成的知点系,受完整的理想约束,具有N个自由度,其 位置可由N个广义坐标 来确定。则有,是广义坐标对,这就是拉格朗日方程,简称拉氏方程。它是由N个二阶常微分方程组成的方程组。将此微分方程组积分,就可以得出以广义坐标表示的质点的运动方程。,1.2,拉 格 朗 日 方 程,二、保守系统的拉格朗日方程,在上述条件下,如果质点系所受的主动力都是有势力,就得到保守系统的拉格朗日方程,式中 为质点系动能和势能之差,称为拉格朗日函数。,这就是保守系统的拉格朗日方程。,三、应用拉格朗日方程解题的步骤,1、确定研究对象,(一般以整个系统)判断系统的自由度数目,选取合适的广义坐标。,2、分析系统的运动,写出用广义坐标及广义速度表示的系统的动能。(速度及角速度均为绝对的),1.2,拉 格 朗 日 方 程,3、计算对应每个广义坐标的广义力;当主动力为有势力时,需要写出用广义坐标表示的势能及拉格朗日函数。,4、计算诸导数:,或,5、写出拉格朗日方程并加以整理,得到N个二阶常微分方程。由2 N个初始条件,解得运动方程。,1.2,拉 格 朗 日 方 程,例3 在水平面内运动的行星齿轮机构如图。已知动齿轮半径为r,重为P,可视为均质圆盘;曲柄OA重Q,可视为均质杆;定齿轮半径为R。今在曲柄上作用一不变的力偶,其矩为M,使机构运动。求曲柄的运动方程。,解:以整个系统为研究对象,系统具有一个自由度,取曲柄转角 为广义坐标。,由运动学关系知,动齿轮的角速度 与曲柄的角速度 的关系为,则系统的动能为,1.2,拉 格 朗 日 方 程,给曲柄以虚位移,则对应的广义力为,求诸导数,1.2,拉 格 朗 日 方 程,即,积分得曲柄的运动方程为,式中,、分别为初始转角和初始角速度。,1.2,拉 格 朗 日 方 程,例4 如图轮A的质量为,在水平面上只滚动不滑动,定滑轮B的质量为,两轮均为均质圆盘,半径均为R,重物C的质量为,弹簧的弹性系数为,试求系统的运动微分方程。,解:以系统为研究对象,系统具有一个自由度。取 x 为广义坐标,x 从重物的平衡位置量起。系统的动能为,设系统平衡时弹簧的静伸长为,则有关系式,即,1.2,拉 格 朗 日 方 程,以系统平衡位置为弹力及重物C的零势能位置,则系统的势能为,利用前面的关系,整理得,代入保守系统的拉格朗日方程 得,即为系统的运动微分方程。,则拉格朗日函数为,1.2,拉 格 朗 日 方 程,例5 如图,均质圆轮的质量为,半径为R,在水平面上只滚动不滑动。杆长L质量为 与轮在圆心A铰接,试求系统的运动微分方程。,解:以系统为研究对象,系统具有两个自由度。取 x 和 为广义坐标。,系统的动能为,整理后得,1.2,拉 格 朗 日 方 程,系统的势能为,则拉格朗日函数为,1.2,拉 格 朗 日 方 程,(1)、(2)即为系统的运动微分方程。,1.2,拉 格 朗 日 方 程,例6 如图轮为均质圆盘,质量为,半径为R,轮心O及重物A只能沿铅直方向运动,重物A的质量为,弹簧刚性系数为,原长为。试求系统的运动微分方程。,解:以系统为研究对象,系统具两个自由度。取 x 和 为广义坐标。,系统的动能为,系统的广义力为,1.2,拉 格 朗 日 方 程,(2),(1)、(2)即为系统的运动微分方程。,1.2,拉 格 朗 日 方 程,例7 如图,物体A的质量为,B轮质量为,半径为R,在水平面上只滚动不滑动,物体A与水平面无摩擦,弹簧刚性系数为,试求系统的运动微分方程。,解:以系统为研究对象,系统具两个自由度。选取、为广义坐标。,系统的动能为,系统的广义力为,1.2,拉 格 朗 日 方 程,(1),(2),(1)、(2)即为系统的运动微分方程。,1.2,拉 格 朗 日 方 程,例8 实心均质圆柱A和质量分布与边缘的空心圆柱B,质量分别为、,半径均为R,两者用通过定滑轮的绳索相连,如图。设圆柱A沿水平面作纯滚动,滚动摩擦不计,圆柱B铅直下降。试求两圆柱的角加速度和质心的加速度。,解:以系统为研究对象,系统具两个自由度。选取、为广义坐标。,系统的动能为,系统所受主动力只有重力,且皆为有势力。取过圆柱的水平面为零势面,则系统的势能为,1.2,拉 格 朗 日 方 程,故拉格朗日函数为,求诸导数,(1),1.2,拉 格 朗 日 方 程,(2),联立求解方程(1)、(2)得,于是角加速度为,1.2,拉 格 朗 日 方 程,例9 质量为 的金属板放置在光滑水平面上,板上有半径为 r、质量为 的均质圆柱,圆柱在板上作纯滚动而不滑动,今有一水平常力 拉动金属板,试求圆柱纯滚的角加速度和金属板的加速度。,解:以系统为研究对象,系统具两个自由度。选取、为广义坐标。,系统的动能为,系统的广义力为,1.2,拉 格 朗 日 方 程,求诸导数,(1),(2),解得,1.1,动 力 学 普 遍 方 程,例3 均质圆柱体A和B质量均为m,半径均为R。圆柱A可绕固定轴O转动。一绳绕在圆柱A上,绳的另一端绕在圆柱B上。求B下落时,质心C点的加速度。摩擦不计。,解:以系统为研究对象,系统所受的主动力有圆柱的重力。设两轮的角加速度为、,轮B质心的加速度为。假想加上惯性力,如图。,其中,此系统具有两个自由度,取轮A、轮B的转角、为广义坐标。给系统一组虚位移,如图。则,由动力学普遍方程得,1.1,动 力 学 普 遍 方 程,将惯性力及(1)式代入上式,得,整理得,由于虚位移、相互独立,要使上式成立,则有,由运动学关系,有,联立求解(2)(3)(4)式,得,

    注意事项

    本文(《拉格朗日方程》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开