欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    一区域连通的分类.ppt

    • 资源ID:5508907       资源大小:2.18MB        全文页数:67页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一区域连通的分类.ppt

    一、区域连通性的分类,设D为平面区域,如果D内任一闭曲线所围成的部分都属于D,则称D为平面单连通区域,否则称为复连通区域.,复连通区域,单连通区域,二、格林公式,定理,边界曲线L的正向:当观察者沿边界行走时,区域D总在他的左边.,证明(1),同理可证,证明(2),两式相加得,G,F,证明(3),由(2)知,L,1.简化曲线积分,三、简单应用,2.简化二重积分,解,(注意格林公式的条件),3.计算平面面积,解,其中L是曲线|x|+|y|=1围成的区域D的正向边界。,格林公式的应用,(格林公式),从,证明了:,练习1,计算积分,解,练习2,求星形线,所界图形的面积。,解,D,L,1,1,-1,-1,重要意义:,1.它建立了二重积分与曲线积分的一种等式关系,2.它揭示了函数在区域内部与边界之间的内在联系,4.它的应用范围可以突破右手系的限制,使它的应用,3.从它出发,可以导出数学物理中的许多重要公式,更加广泛,而这只需要改变边界的正向定义即可。,二 高斯公式,设空间区域G,如果G内任一闭曲面所围成的区域全属于G,则称G是空间二维单连通域;,如果G内任一闭曲线总可以张一片完全属于G的曲面,则称G为空间一维单连通区域.,一维单连通二维单连通,一维单连通二维不连通,一维不连通二维单连通,高斯公式,证明,根据三重积分的计算法,根据曲面积分的计算法,同理,-高斯公式,和并以上三式得:,Gauss公式的实质,表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系.,由两类曲面积分之间的关系知,解,2.简单应用:,(利用柱面坐标得),使用Guass公式时应注意:,解,空间曲面在 面上的投影域为,曲面不是封闭曲面,为利用高斯公式,故所求积分为,三、斯托克斯(stokes)公式,-斯托克斯公式,是有向曲面 的正向边界曲线,右手法则,证明,如图,思路,曲面积分,二重积分,曲线积分,1,2,1,根椐格林公式,平面有向曲线,2,空间有向曲线,同理可证,故有结论成立.,另一种形式,便于记忆形式,Stokes公式的实质:,表达了有向曲面上的曲面积分与其边界曲线上的曲线积分之间的关系.,1.简单应用,解,按斯托克斯公式,有,解,则,即,

    注意事项

    本文(一区域连通的分类.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开