《建筑透视与制》PPT课件.ppt
1,建筑透视与制图,Architectural graphics,陕西师范大学美术学院环境设计系 赵郧安,2,第一章 建筑工程制图初步与规范,Jianzhu shinei zhitu chubu yu guifan,3,第一节 国家建筑制图标准 为了使园林、建筑、室内设计的设计图纸表现方式和表现语言、形式与 规格达到统一,方便不同地区与人员的工作交流,需要由国家行政机关颁布并强制执行一套制图标准。为此,2001年11月1日由国家建设部会同其它相关部门颁布了房屋建筑制图统一标准,形成了我国园林、建筑、室内设计的制图统一标准与制图教学的标准依据。,表1-1,第一章 建筑制图基础,一、图样幅面,所有设计图纸的幅面及图框尺寸均应符合表1-1的规定。,4,图样幅面一般有横式和立式两种形式。以长边为水平边的形式叫横式幅面,以短边为水平边的形式叫立式幅面。无论图样是否装订,都必须在图纸上画出图框。图框用粗实线绘制,图纸与图框的间距a与c要符合表1-1的规定。为了复制与缩微摄影的方便,可在图纸上添加对中符号。对中符号是位于图纸四面幅面线中点处并深入图框内部5mm的一段线宽为0.35mm的实线(参阅图1-1)。,图1-1,5,绘制图纸是要优先采用表1-1中所规定的幅面尺寸,必要时可沿长边加长扩大图纸面积(不得加长短边),但要符合表1-2的规定。,表1-2 图纸长边加长尺寸,6,每一张图纸的右下角都有一个标题栏,即图标(参阅图1-1)。图标用于工程图纸的图名、图号、比例、设计单位、设计人姓名及日期等项目,其长边长度应为180mm,短边长度宜采用30mm、40mm或50mm(参阅图1-2)。学生制图作业的图标可采用图1-3的格式。,二、图标与会签栏,图1-3 制图作业图标,图1-2 图标,图1-4 会签栏,7,图纸的图框线、标题栏的外框线、分格线的线宽应符合表1-3的规定。,表1-3 图框线、标题栏线的宽度,8,三、比例 所谓比例,是指图形与实物相对应的线性尺寸之比。比例的大小是指比值的大小,如1:50大于1:100。比例应以阿拉伯数字表示,如1:1、1:2、1:3等等。1:1是表示图形与实物大小相同,1:2和1:3是表示图形是实物的12和13。比例应注写在图名的右侧,字的底线应取平;比例的字高应比图名的字高小一号或二号。平面图1:100 1:10 绘图所用的比例,应根据图样的用途及复杂程度从表1-4中选用,并优先选用表中的常用比例。,一般情况下,一份图样应尽量选用一种比例;但根据需要,同一图样也可选用两种比例。,表1-4 绘图所用比例,9,线宽与线型 图线的宽度b,应从下列线宽系列中选取:0.25mm、0.35mm、0.5mm、0.7mm、1.0mm、1.4mm、2.0mm。每个图样应其复杂程度与比例大小,先确定基本线宽b,再选用表1-5中的适当线宽组。,在同一张图样内,相同比例的图样,应选用相同的线宽组。,表1-5线宽组(单位:mm),四、图线,10,图线的画法及注意事项 各种图线的画法请参阅表1-6。相互平行的图线,其间隙不宜小于其中粗线的宽度,且不宜小于0.7mm。虚线、单点长画线或双点长画线的线段长度和间隔,宜各自相等。单点长画线或双点长画线的,当在较小图形中绘制有困难时,可用实线代替(参阅图1-5)。单点长画线或双点长画线的两端不应是点,单点长画线与单点长画线或单点长画线与其他图线 交接时应是线段交接(参阅图1-6a)。虚线与虚线交接或虚线与其他图线交接时应是线段交接,虚线为实线的延长线时不得与实线交 接(参阅图1-6b)在图纸上,图线不得与文字、数字或符号重叠、混淆。不可避免时,应首先保证文字等的清晰。,图1-5实线代替单点长画线,图1-6图线交接的画法,a,b,11,12,工程建筑制图,应选用表1-6中所示的线型。,表1-6图线,12,图纸上所需书写的文字、数字或符号等,均应笔画清晰、字体端正、排列整齐;标点符号要清楚正确。各种文字的大小选择适当,文字高可从下列系列中选用:2.5、3.5、5、7、10、14、20mm。如需书写更大的字,其高度应按的比值递增。汉字的字高应不小于3.5mm。图样上的汉字应采用长仿宋体,其高度与宽度的关系,应符合表1-7的规定。,表1-7长仿宋体字体高宽的关系(单位mm),六.字体,13,标注尺寸的四要素图纸上的尺寸,应包括尺寸界线、尺寸线、尺寸起止符号和尺寸数字四个要素(参见图1-7)。1。尺寸界限 尺寸界限要用细实线绘制,一般应与被注长度垂直。其一端应离开图形轮廓线不小于23mm。另一端应超出尺寸线23mm。必要时,图形轮廓线可做尺寸界限(参见图1-8)。,图1-8尺寸界限,图1-7尺寸组成四要素,七.尺寸标注,14,图1-10尺寸数字的读数方向,图1-9箭头的画法,b,a,2。尺寸线 尺寸线也用细实线绘制,要与被注长度平行。不能用其他图线代替尺寸线。3。尺寸起止符号 尺寸起止符号一般用中粗斜短线绘制,其倾斜方向应与尺寸界线成顺时针45角,长度宜为23mm。半径、直径、角度与弧长的起止符号,宜用箭头表示。箭头画法参见图1-9。4。尺寸数字 图形上的尺寸应以尺寸数字为准,不得从图上直接量取。图形上的尺寸单位,除标高与总平面图 以米(m)为单位以外,其它均必须以毫米(mm)为单位,图中尺寸不写单位。尺寸数字的读取方向,应按图1-10a所示的规定注写,若尺寸数字在30斜线区内,宜按图1-10b所 示的形式注写。,15,尺寸数字应依据其读数方向注写在靠近尺寸线的上方中部,如果没有足够的注写空间,最外边的尺寸数字可以注写在尺寸界限的外侧,中间相邻的尺寸数字可错开注写,也可引出注写。(参见图1-11)。尺寸数字不得被图线穿过,不可避免时,应将尺寸数字处的图线断开。尺寸的排列与布置 如图1-13所示,尺寸的排列布置应注意以下几点:尺寸宜标注在图形轮廓线以外,不宜 与图线、文字及符号等相交。相互平行的尺寸线,应从被注的图形轮廓线由近向远整齐排列,小尺寸离轮廓线最近,大尺寸离轮廓线最远。图形轮廓以外的尺寸线,距图形最外轮廓的距离,不宜小于10mm。平行排列的尺寸线间的距离宜为710mm,并保持一致。总尺寸的尺寸界线,应靠近所指部位。中间的分尺寸的尺寸界线可稍短,但其长度应相等。,图1-11尺寸数字的注写位置,图1-12尺寸的排列与布置,16,半径、直径的尺寸标注 1。半径尺寸 半圆及小于半圆线的圆弧要标注半径。半径的尺寸线,应一端从圆心开始,另一端画箭头直至圆 弧。半径数字前应加注半径符号“R”(参见图1-13)。较小的圆弧半径,可按图1-13b所示形式标注;较大半径的圆弧,可按图1-13c所示形式标注。,图1-13尺寸的排列与布置,b,c,a,17,2。直径标注 圆及大于半圆的圆弧,要标注直径。标注圆的直径尺寸时,在直径数字前加注直径符号。在圆内标注的直径尺寸线应通过圆心,两端画箭头直至圆弧,(参见图1-14a)。较小圆的直径尺寸,可标注在圆外(参见图1-14b)。,图1-14直径的标注方法,a,b,18,坡度、角度的标注方法1。坡度尺寸 标注坡度时,在坡度数字下应加注坡度符号。坡度符号为单面箭头,一般应指向下坡方向(参见图1-15a、b)。坡度也可用直三角形形式标注(参见图1-15c)。,2.5,1,图1-14直径的标注方法,a,b,c,19,2。角度尺寸 角度的尺寸线应以圆弧表示,该圆弧的圆心应是该角的顶点,角的两个边为尺寸界线。角度的起止符号应以箭头表示,如没有足够位置画箭头,可用圆点代替。角度数字应以水平方向注写(参见图1-16)。弧长、弦长的尺寸标注1。弧长尺寸 标注圆弧弧长时,尺寸线应以与该圆弧同心圆的圆弧线表示。尺寸界线应垂直于该圆弧的弦,起止符号应以箭头表示,弦长数字上方应加注圆弧符号(参见图1-17)。2。弦长尺寸 标注圆弧弦长时,尺寸线应平行于该弦的直线表示,尺寸界线应垂直于该圆弧的弦,起止符号应以中粗斜短线表示(参见图1-18)。,图1-16角度的标注方法,图1-17弧长的标注方法,图1-18弦长的标注方法,20,尺寸的简化标注1。单线图尺寸 杠杆或管线的长度,在单线图(桁架图、钢筋简图、管线图等)上,可以直接将尺寸数字沿杠杆或管线的一侧注写(参见图1-19)。2。连排等长尺寸 连续排列的等长尺寸可用“个数等长尺寸总长”的形式标注(参见图1-20)。3。对称构件尺寸 对称构(配)件采用对称省略画法时,该对称构(配)件的尺寸线应略超过对称符号,仅在尺寸线的一端画尺寸起止符号,尺寸数字应按整体全尺寸注写,其注写位置与对称符号对直(参见图1-21)。,图1-20等长尺寸标注方法,图1-19单弦图尺寸标注方法,21,4。相同要素尺寸 构(配)件的对称要素(如孔、槽等)如果相同,可仅标注其中一个要素的尺寸,并注出个数(参见图1-22)。,图1-22相同要素尺寸标注方法,图1-21对称构件尺寸标注方法,22,第二节 手工绘图工具与绘图的方法步骤 一、绘图工具手工绘图工具一般包括绘图板、丁字尺(一字尺)、三角板、比例尺、曲线板、何绘图仪等。图板 图板有0号(9001200mm)、1号(600900mm)、2号(400600mm)、等不同规格,可根据需要进行选定。丁字尺 丁字尺是用来画直线的,它又尺头与尺身组成。尺头的内侧是滑动边,和尺身工作边成90角,一般尺身带有尺寸刻度。三角板 一套三角板中一块是45板,另一块是3060板。两块板配合使用可画出已知的平行线和垂直线等。比例尺 比例尺也称为三菱尺,是将真实尺寸的设计物转化为绘图纸面可以方便容纳尺度的工具。在选用比例尺度上,要遵照国家颁布的有关制图标准的规定。圆规与分规 圆规是用来画圆和画弧的工具。圆规的两条腿中有一条可以通过有关附件插上铅笔、针管笔和钢针腿,他们分别可以用来画铅笔线、墨线、和当作分规使用。分规的两腿均装有钢针,这是取量和等分线段的工具。其他工具除了上述工具之外,还有铅笔、曲线板、绘图笔(针管笔)、量角器、各种绘图模板、擦图片、橡皮、涂改液等等。,23,第二章 投影的基本原理与制图,Touying de jiben yuanli yu zhitu,24,第一节。投影的概念 一。投影法 投影是我们司空见惯的自然现象,它是在自然光和人工光的环境下,物体在光源相反方向的表面呈现的、比周围表面亮度更加阴暗的影像。人们在观察、研究这一自然现象的过程中,找到了一种在平面上正确清楚表现空间物体的形体、大小的方法,这就是投影法。投影法中的所谓投影,是假定一束光线沿着一定的方向从物体的表面通过,并在与光源相反方向的平面上得到的一个图形。在投影法中,把假定的光线称作投影线,把承受投影的平面称作投影面,把投影线、投影面和物体称作投影的三要素(参阅图2-1)。二。投影的分类 根据投影线的形式不同,一般把投影分为中心投影和平行投影。中心投影由一点发出的放射状投影线作出的投影为中心投影(参阅图2-2),这种方法称作中心投影法。中心投影法的特点是投影线相交于一点,如果物体的位置发生变化,投影也变化。中心投影是建筑与室内设计透视图所用的最主要的投影法,所谓建筑与室内透视图就是用中心投影法绘制出来的设计意图表达图面。,25,平行投影 由平行投影线作出的投影为平行投影,这种方法称作平行投影法。平行投影法的特点是投影线平行,物体的位置发生变化,投影不变化,并能反映物体真实地形状与大小。在平行投影中,如果投影方向垂直于投影面,那么所作的平行投影为正投影(参阅图2-3a)。如果投影方向倾斜于投影面,那么所作的平行投影就是斜投影(参阅图2-3b)。建筑与室内设计工程图,就是依据正投影的原理绘制的,我们在讲建筑与室内设计的平行投影时主要是指以上所说的正投影。,图2-3平行投影A正投影 b斜投影,26,要想用正投影确定空间唯一物体,只用一个投影面是不行的,必须建立多面投影体系,我们一般用三个相互垂直的投影面,来建立一个三面正投影体系(参阅图2-4)。其中把水平位置的平面叫做水平投影面或水平面,用字母H 表示;把正对位置的平面叫做正立投影面或正立面,用字母V 表示;把与H、V 面均垂直的平面叫做侧立投影面或侧立面,用字母W 表示。三个投影相交于三个投影轴OX、OY、OZ,三个投影轴相交于一点O,称为原点。把某一形体置于三面投影体系中,并把形体在V 面上的投影称为正面投影或V 面投影;在H 面的投影称为水平投影或H 面投影;在W 面上的投影称为侧面投影或W 面投影(参阅图2-5a)。形体在三面投影体系中的V 面投影、H 面投影和W 面投影,虽能全面反映形体不同侧面的形状,但如果要在一张平面中将其完整地反映出来,就需要将三个投影面展开。我们假想V 面不动,H 面绕 OX 轴向下转90,W 面绕 OZ 轴向后转90,这样就可以把形体的V 面投影、H 面投影、W 面投影在一个平面上表示出来(参阅图2-5b)。在图2-5中可以看出,V 面投影反映形体的长和高,H 面投影反映形体的长和宽,W 面投影反映形体的宽和高。在三个投影图之间存在以下关系:V 面投影和H 面投影上反映“长对正”;在V 面投影和W 面投影上反映“高平齐”H 面投影和W 面投影上反映“宽相等”。简单得说,“长对正”,“高平齐”,“宽相等”是三面投影图的投影特性,也可称为“三等”特性。,第二节三面正投影,X,Z,图2-4三面投影体系,27,图2-5三面投影体系和三面投影图,“长对正”“高平齐”“宽相等”,28,第三章 透视图法,Toushi tufa,29,透视图是设计意图表现的一种语言形式,与其它平面的制图的形式(如建筑平面图、立面图等)相比,透视图能在二维平面介质上模拟设计意图的三维空间形象,使观者能够预见未建成的设计构筑物的直观形象。在此基础上,如果用手绘或电脑等方法把对象的在空间、立体、色彩、质感等视觉细节形象加以表现的话就是透视效果图。从这个意义上来讲,透视图是绘制透视效果图的必修课。透视图也是其他设计艺术门类(商品包装、工业设计等)预想效果表现的有效方式。透视图的绘制是依据建筑设计、室内设计等平、立面所提供的基本设计尺寸数据来绘制的,因此,透视图的绘制要严格的把握设计物的基本型体与尺寸,否则会使画面失真,影响设计意图的传达与表现。对于经常绘制透视图的熟练人士来说,每次工作未必一定要按严格的透视作图步骤去做图,它们往往利用简略的制图方法去做图。一些绘图高手甚至仅凭感觉就可以画出准确、漂亮的透视图。但是这种极致的境界必须建立在熟练运用按规矩作图的基础上。,第一节 透视图在设计意图表现中的意义,图3-1透视投影基本原理,30,一。基本概念 透视图是投影制图的一个绘图形式,在制图学上也将其称为中心投影、线性透视。和地球上的其他动物同样,人拥有不同平面位置的两只眼睛。两眼或复眼中的世界是充满动感、极为复杂空间形象,要想用二维的平面图形去模拟人眼中的空间形象,只有通过透视图来实现。透视图是在模拟单眼视角中的空间形象。它假定观察者用一只眼去看物象,事实上除了射击之外我们从不采用这个方式去观察世界。我们往往用双眼立体的看世界,即便脑袋不动我们的视线也总是围绕着物体转来转去。因此,透视只能是大概的模仿人眼世纪的复杂功能。透视的投影是通过汇聚在表示观察者的单眼的空间上一个固定点的直线,将一个三维立体的所有点都投射在绘图纸上。这个视线的汇聚性质将透视投影与正投影和斜投影区别开来,在正投影和斜投影中,投影线彼此之间保持平行。与三视图和轴测图相比,透视图模拟的是视觉上的真实,而三视图和轴测图表现的是客观的真实。绘图平面PP是一个用来投影三维立体形体的假想透明平面,并且这个平面总是垂直于中心视轴CAV。从视点SP出发到所观察物体各个点的所有投射线都是视线。从目标物体上任何一点出发的视线与绘图平面的交点就是该点在绘图平面上的透视投影。中心视轴CAV就是指定了假定的观察者观察方位的视线(即与绘图平面正交的视线)。,第二节 透视的基本概念,图3-1透视投影基本原理,31,透视投影的会聚性 透视图的会聚性是指透视图中的相互平行的线段向远处移动延伸最后消失于一点的现象。当两条平行线移动到远处时,它们的距离会越来越小,如果无限延续则两条线最终会消失于一点。这个点就是这对平行线的消失点VP,也称灭点。画面所有与这两条平行线平行的直线线段都会消失于这个灭点上。绘图平面PP是一个用来投影三维立体形体的假想透明平面,并且这个平面总是垂直于中心视轴CAV。从视点SP出发到所观察物体各个点的所有投射线都是视线。从目标物体上任何一点出发的视线与绘图平面的交点就是该点在绘图平面上的透视投影。中心视轴CAV就是指定了假定的观察者观察方位的视线(即与绘图平面正交的视线)。,32,一.一点透视 当我们在观察一个立方体或一个立方体形状的空间时,如果我们的中心视轴垂直于立方体或立方体形状的空间正面,立方体或立方体形状的所有竖直线都平行于绘图平面PP并保持垂直;平行于绘图平面的且同中心视轴CAV保持垂直关系的水平线仍然保持水平;平行于中心视轴线的所有纵深方向的线向视心C一点集中的话,这个透视图就是一点透视图,所有纵深方向的线向视心集中的点就是以点透视中的一点。一点透视假定三个基本轴中的两个轴线-竖直轴线与水平轴线与绘图平面平行,所有与这两个基本轴平行的直线都与绘图平面平行而不会汇聚于一点,所以也叫平行透视。一点透视纵深感强,适宜表现建筑空间的内部,常常被运用于室内设计透视图中。但一点透视有强烈的对称感,如果处理不好会显得画面有些呆板。二.两点透视 当我们保持中心视轴CAV水平,移动视点到上述立方体斜侧时,立方体的竖直线还是保持竖直,但两个水平线系就和绘图平面PP斜交,分别汇聚在左右两侧,这左右两点就是所谓“两点透视”中的两点。两点透视画面比较生动活泼,无论是建筑外观或是室内设计都被广泛应用。三.三点透视如果我们将上述立方体的一个角从基面GP上提升,或是将整个立方体从假想的基面GP上提升或是下降,那么三个平行线系都将和绘图平面PP相交汇聚于三个不同方向的灭点,这三个点就是所谓“三点透视”中的三点。三点透视多用于高层建筑的表现。值得注意的是,每一种透视类型都不是说这种透视类型的画面中只有一个、两个或三个灭点,实际上灭点的个数取决我们观察物体的角度和被观察物体平行线系的多少。例如,但我们观察一个简单的人字形屋顶时,就可以看到有一组竖直线系、两组平行线系和两组斜线系的总共五个灭点。,第三节 透视的种类,一点透视,两点透视,三点透视,33,影响透视效果的因素大概有视角、视距、视高、目标物与绘图平面的角度、目标物与绘图平面的位置关系等。一.视角 人的视野可以假想为一个以E为顶点的圆锥体。这个圆锥体与绘图面PP成垂直相交的状态,其交线是以CV为圆心圆,垂直角为60度。目标物在这个视野范围内不会失真。,第四节 影响透视效果的一些基本因素,34,二.视距 视距是指视点与目标位置的距离。在假定目标物与绘图平面PP距离一定(一般设定为紧靠绘图平面)、视高一定的条件下;一点透视时,视距越近,纵深感越强,视距越远,纵深感越弱。并且图形大小不变。两点透视时,视距越近,两个灭点的相互距离越近,透视变形越大;视距越远,两个灭点的相互距离越远,透视变形越小。,35,三.视高 视高即视点离基准平面Gl的高度。视高决定了透视图的效果是平视还是俯视、仰视。当视点上移或是下移时,视平线也随之上下移动;如目标物在视平线上方,我们就可以看到目标物的下部表面,如目标物在视平线下方,我们就可以看到目标物的上部表面。在绘制室内空间透视图时,一般采用1.6M左右中国人的视线高度。,36,四.目标物与绘图平面的角度 目标物与绘图平面的角度决定了目标物在透视中的变形缩短效果。一般讲,目标物远离绘图平面转动越多,透视图中的透视缩短越明显;目标物远离绘图平面转动越少,透视图中的透视缩短越小,当目标物与绘图平面平行时,透视图上就表现出它的真实形状。,37,五.目标物与绘图平面的位置关系 目标物与绘图平面的位置关系只对透视图形的物理绝对值大小产生影响。在视点与目标物距离不变、视高一定的条件下,绘图平面位于目标物之前,图形的绝对尺寸关系越小;反之,绘图平面位于目标物之后,图形的绝对尺寸关系越大。,38,一.平面投影法1.根据已知条件,在图纸上画视平线HL和基准面线GL。2.自视点En作OX、OY的平行线,与PP相交,然后从焦点引出垂线,求得Vx、Vy两个灭点。3.立方体的垂边OA在画面上,其透视等于实长。自En向ABCD点连线在绘图平面PP上相交,由上述交点做垂涎,得到OAOA。4.自O、A向Vx、Vy连线求得BB、DD。5.D点、B点分别向Vx、Vy连线求出C点,既可求出立方体透视。,第五节 透视图的实用画法,39,二.室内透视一点透视画法1.先按室内的实际比例尺寸确定ABCD。2.确定视高HL,一般在之间。3.灭点VP与量点M根据画面表现效果任意确定。4.在线段AD上以1米或50CM(或是其他方便的任意尺寸单位)求出室内的进深,然后从M点与其连接,得到室内的透视进深a点,然后再从a点向B-VP线段做垂线、分别画出B-C、C-D、A-D的平行线,最终得到另一个室内进深面。5.D点、B点分别向Vx、Vy连线求出C点,既可求出立方体透视。,40,5.最后根据外框的实际尺寸,利用平行法的原理,求出室内透视方格完成透视图的基本框架。,41,三.室内透视一点透视画法之二1.先按室内的实际比例尺寸确定ABCD外框。2.确定视高HL,灭点V1,任意定出M点与V2灭点线。再由V2交点b引垂线,求出第二灭点透视外框。3.用M点求出CD线段的中点O,连接V1,连接c-d。,42,4.最后用对角线、分割增值法求出透视图。,43,四.三点透视画法1.画大小适当的圆并将其三等分,画三条相互成120度角度关系的三条线,与圆周相交得三个点V1、V2、V3,并定V1-V2为视平线HL。2.在A的透视线上任取一点为B。3.由B到HL作平行线,和A-V1交点为C,B-C为正六面体的对角线之一。4.在B、C的透视线上求D、E、F完成透视图。此为左右上下均由45度角相接的正六面体。,44,第四章 设计图形的几何画法,Sheji tuxing de jihe huafa,45,在AB线段上求得中点M并再通过M点画一条垂直于AB的线段,然后 再以AB为半径以M点为圆心在垂直线上求出C点。将A与C两点相连接,然后从C点出发在其延长线上求出2分之一AB 长的D点。以用AD为半径在垂直线上求出5角形顶点的E点。以AB为半径以E点为圆心画弧,然后分别再以AB为圆心画弧求出5角 形另外2点,最后将各点用直线连接便形成了5角形。,从一边求正5角形与正10角形,46,E既是正5角形的顶点又是正10角形外接圆的圆心。以E为圆心以AE 为半径画正10角形的外接圆,然后再用AB将外接圆周10等分,最后 将各点用直线连接便形成了正10角形。,从一边求正5角形与正10角形,47,先求出线段AB的中点M并以M为始点画出一条垂直于AB的线段。由于AM等于MO,所以用AM为半径以M为圆心画弧求出正方形的 中心点O。以AO为半径以O为圆心画圆,再从AB线段的两端分别画垂直于 AB的直线并与圆周相接,最后把垂直线与圆周相接的两点用 直线连接便形成了正方形。,从已知边求正方形,48,与画正方形相同,先求出线段AB的中点M并以M为始点画出一 条垂直于AB的线段,再以AM为半径以M为圆心画弧求出O1点。由于AO1等于从O1到8角形中心0点的距离,以AO1为半径以O1 点为圆心画求出O点。以O点为圆心以AO为半径画出8角形的内接圆,用AB的长度把 内接圆周进行8等分,最后将圆周上的各点用直线连接便形成 了8角形。,从已知边求正8角形,49,通过圆心画两条相互垂直的线段,然后选取从中心O划分的任 何一方的半径并求出它的2分之一长度的M点。以MA为半径以M点为圆心在直径上求出B点。AB的长度正是5角形的边长,所以用AB为半径将内接圆周进行 5等分,最后将圆周上的各点用直线连接便形成了5角形。将被5等分的圆弧再进行2分之一等分得到10个圆周上的点,最 后将各点用直线连接便形成了10角形。,内接圆的正5角形与正10角形,50,角的等分可以用量角器等绘图工具来绘制,也可用几何画法简单快捷的进行。角的2等分以角的顶点为圆心,用任意的半径画弧。角的两直线与圆弧相交得B、C两点,再以这两点为圆心画两条半径完全相同的圆弧。两圆弧相交得D与D两点,再将D点与A点用直线相连接便将这个角2等分。,角的等分,51,以角的顶点为圆心,用任意的半径画弧。角的两直线与圆弧相交得B、C两点,再以这两点为圆心画用 与的圆弧相同的半径画两条圆弧。从圆弧与圆弧的交点D、E出发画两条与顶点A相连接的直 线,到次便将这个直角3等分了。注:几何学的方法没有提供任意角的3等分的办法,但有近似的方法。,直角的3等分,52,选任意的点画圆O1,并将直径的垂直两端分别命名为A和B。然后用AB为半径,分别以AB为圆心画圆。用圆O1的3分之一直径在对象轴上找到O2,再以O2为圆心画出与A、B的圆弧能够流畅连接的圆。,卵形,53,在已知的圆内通过圆心作纵向轴线,在与圆周的相接点上得AB两点,再以AB为半径并分别以A、B为圆心画弧得到交叉点P。用n角形的n数将轴线AB等分得到第2等分点n2,再从P点出发画一直线通过n2与圆周相接得到Q点。AQ的长度为正n角的一个边长,然后用AQ的长度将圆进行n等分,最后把各等分点用直线相连接。,内接圆的正多角形(近似法),54,从已知的边长求正n角形把已知的正n角形的边长AB为半径并以B为圆心画半圆得到C点。以AC为半径并分别以A、C为圆心画弧得到P点。然后将AC作n等分得到第2等分点的n2,再从P点出发经过n2到达半圆得到Q点。Q点与B点是正n角形的两个相互邻接角的顶点。求AB和BQ垂直2等分线并使其相接便得到了正n角形内接圆的圆心。以OQ为半径以O为圆心画圆得到正n角形内接圆,再用AB的长度将 圆周作n等分最后将各等分点用直线相连。,55,在水平横线上以适当的间距取F1、F2两点,然后再取同样的距离在F1、F2两点的内侧求A、B两点。在水平横线上的任意距离上取点P,然后以F1为圆心用AP为半径画弧;以F2为圆心用BP为半径画弧,从而在水平横线的上下得到两个交叉点。在纵向轴的另一侧,则用与此前相反的方式,既用BP为半径以F1为圆心画弧;用AP为半径F2为圆心画弧,从而得到纵向轴的另一侧的各点。接下来再取Pn点,并重复以上方法作图。最后将各点用流畅的曲线连接。,双曲线,56,将同样半径的两个圆O1、O2的圆心放置在对方的圆周上。从两圆交点P1P2出发画通过O1、O2的圆心并直达圆周的直线,从而得到A1、A2、B1、B2各点。最后分别用相同长度的P1、A1和P2、B1为半径、以P1、P2为圆心画与圆O1、O2相切的圆弧。,用圆规画椭圆1,57,取适当的距离并列同样半径的两个圆O1、O2。在两圆之间的重点画一条垂直轴线。通过O1、O2的圆心画与垂直轴线相交的直线,从而得到P1、P2两点。最后以P1、P2两点为圆心,用与能O1、O2流畅相切的圆弧与圆O1、O2相连。,用圆规画椭圆2,58,选一定长度的细线并用图钉将两端固定,把铅笔放置于椭圆的内侧向外靠紧细线画弧。用同的方法在另一侧作图。(图钉所在的F1、F2两点是椭圆的两个中心点。),椭圆,59,画成直角关系的两条轴线,再以交点O为圆心画椭圆的长轴与短轴的半径圆。从交点O出发画任意角度的放射线,在放射线通过圆R和圆r时得到A、B两点。从A点出发画平行于纵轴的平行线,从B点出发画平行于横轴的平行线,得出两线的交点P。同样的作业反复进行,最后用光滑流畅的线条将各个点连接后便成。(P点越多椭圆越正确流畅。)用圆R的半径并以圆r与短轴的交点画弧,这个圆弧与长轴交叉两个点F1与F2就是该椭圆的两个中点。,椭圆2,60,先画一条垂直的基线,再画一条通过中心点F的、与基线成直角水平线。然后再以任意的间距画一条平行于基线的垂直线。以中心点F为圆心、以中心点与基线的间距为半径画弧,然后再以中心点F为圆心、以基线与平行线的间距为半径画弧并在平行线上求出P1和P2点。同样的作业反复进行,最后用光滑流畅的线条将各个点连接后便成。,抛物线,61,画一条水平的涡形中轴线,并根据需要定出A和B点。在中轴线的上部以B点圆心、在中轴线的下部以A点圆心从中心开始顺次按AB所需要的半径画弧。,涡线,62,画一条水平的涡形中轴线,并根据需要定出A和B点。在中轴线的上部以B点圆心、在中轴线的下部以A点圆心从中心开始顺次按AB所需要的半径画弧。,涡线,63,在中心画一个小方形,将4个顶点分别命名1、2、3、4,然后将4个边向4面延长。以点1为圆心以小方形边长为半径画四分之一圆,然后再以点2在为圆心以小方形边长并加上四分之一圆为半径画圆,以次类推。,涡线,64,涡线画一条水平的涡形中轴线,在中轴线的一方画半圆。把在作图中画的半圆的一端圆心、以其直径为半径半圆,并以次类推。,65,将圆的外接正方形之4边各4等分,然后将AB的3个等分点分别命名为a1、a2、a3,将BC的3个等分点分别命名为b1、b2、b3,将CD的3个等分点分别命名为c1、c2、c3,将DA的3个等分点分别命名为d1、d2、d3。这时Ab1和b1c3的直线交叉点P与正方形的内接圆O的圆周相交(近似的),并形成30度的a2-O-P锐角。利用圆的这种特性,将透视圆的外接正方形作合理的透视变形便可画出准确的透视圆。,透视圆的几何画法:,66,正多角形是指角的所有边长与顶角的角度相等的角状形体。因此,正多角形有着中心角相等与圆形内接的特征。与圆内接的正三角形与正六角形用已有圆的半径将圆周作镜面等分。用直线按秩序将圆的中心线与等分线构成的各点连接起来构成 正六角形。如果用间隔的方法进行连接的话则构成正三角形。,正多角形,67,通过已有圆的圆心做成直角关系的两条线段。连接直角关系的两条线与圆周相交的点便构成正方形。将在得到的中心角在进行2等分并将等分线与圆周相交,最后将所有与圆周相交的点用直线连接后便构成正8角形。,利用内接圆画正方形与正8角形,68,把AB线的两端为圆心画任意半径的圆弧,再丛两圆弧的交叉点(C和D)画连接C和D的直线。于是CD线将AB线2等分并垂直于AB线。,直线的2等分、垂直线的画法,69,从AB线的任意端(图例为A端)画一条任意角度的直线辅助线。按预定等分的数量用任意长度的等距离间隔划分辅助线。把n点与B点相连接,再从步骤得到的各点出发画平行于nB线 的线,这些线与AB线的相交的点便是AB线被等分的点。,直线的n等分画法,