欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《应用多元统计分析》PPT课件.ppt

    • 资源ID:5505660       资源大小:7.33MB        全文页数:53页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《应用多元统计分析》PPT课件.ppt

    New words,We have seen in the previous chapters how very simple graphical devices can help in understanding the structure and dependency of data.The graphical tools were based on either univariate(bivariate)data representations or on“slick”transformations of multivariate information perceivable by the human eye.Most of the tools are extremely useful in a modelling step,but unfortunately,do not give the full picture of the data set.,3 Moving to Higher Dimensions,Univariate,ju:nivrit Adj.单变量的,One reason for this is that the graphical tools presented capture only certain dimensions of the data and do not necessarily concentrate on those dimensions or subparts of the data under analysis that carry the maximum structural information.In Part III of this book,powerful tools for reducing the dimension of a data set will be presented.In this chapter,as a starting point,simple and basic tools are used to describe dependency.They are constructed from elementary facts of probability theory and introductory statistics(for example,the covariance and correlation between two variables).,3 Moving to Higher Dimensions,The covariance is a measure of dependence.Covariance measures only linear dependence.Covariance is scale dependent.There are nonlinear dependencies that have zero covariance.Zero covariance does not imply independence.Independence implies zero covariance.Negative covariance corresponds to downward-sloping scatterplots.Positive covariance corresponds to upward-sloping scatterplots.The covariance of a variable with itself is its variance Cov(X,X)=XX=2X For small n,we should replace the factor 1/n in the computation of thecovariance by 1/n1.,The correlation is a standardized measure of dependence The absolute value of the correlation is always less than one.Correlation measures only linear dependence.There are nonlinear dependencies that have zero correlation.Zero correlation does not imply independence.Independence implies zero correlation.Negative correlation corresponds to downward-sloping scatterplots.Positive correlation corresponds to upward-sloping scatterplots.Fishers Z-transform helps us in testing hypotheses on correlation.For small samples,Fishers Z-transform can be improved by the transformation,The center of gravity of a data matrix is given by its mean vector x=n1 XT1n.The dispersion of the observations in a data matrix is given by the empirical covariance matrix S=n1XTHX.The empirical correlation matrix is given by R=D1/2 SD1/2.A linear transformation Y=XAT of a data matrix X has mean A and empirical covariance ASXAT.The Mahalanobis transformation is a linear transformation z i=S1/2(x i)which gives a standardized,uncorrelated data matrix Z.,Simple ANOVA models an output Y as a function of one factor.The reduced model is the hypothesis of equal means.The full model is the alternative hypothesis of different means.The F-test is based on a comparison of the sum of squares under the full and the reduced models.The degrees of freedom are calculated as the number of observations minus the number of parameters.The F-test rejects the null hypothesis if the F-statistic is larger than the 95%quantile of the F d f(r)d f(f),d f(f)distribution.The F-test statistic for the slope of the linear regression model y i=+x i+i is the square of the t-test statistic.,Covariance Matrix,Correlation Matrix,4 Multivariate Distributions,The preceding chapter showed that by using the two first moments of a multivariate distribution(the mean and the covariance matrix),a lot of information on the relationship between the variables can be made available.Only basic statistical theory was used to derive tests of independence or of linear relationships.In this chapter we give an introduction to the basic probability tools useful in statistical multivariate analysis.,Means and covariances share many interesting and useful properties,but they represent only part of the information on a multivariate distribution.Section 4.1 presents the basic probability tools used to describe a multivariate random variable,including marginal and conditional distributions and the concept of independence.In Section 4.2,basic properties on means and covariances(marginal and conditional ones)are derived.,4.1 Distribution and Density Function,

    注意事项

    本文(《应用多元统计分析》PPT课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开