《工业结晶技术》PPT课件.ppt
工业结晶过程,主讲教师:杨亦文工学博士/教授,博导浙江大学化工系制药工程研究所2012.11,工业结晶过程 Industrial Crystallization,一、工业结晶概论 Chapter 1 Overview of Industrial Crystallization结晶在工业上的应用 Utilization of Crystallization in Industries结晶产品的表征 Characterization of Crystalline Products溶解度和过饱和度 Solubility and Supersaturation,工业结晶过程 Industrial Crystallization,二、成核 Chapter 2 Nucleation初级成核 Primary Nucleation二次成核 Secondary Nucleation工业结晶器中的成核 Nucleation in Industrial Crystallizers,工业结晶过程 Industrial Crystallization,三、晶体生长 Chapter 3 Crystal Growth晶体生长过程 Process Involved in Growth of Crystals总的晶体生长过程 The Overall Crystal Growth Process总的晶体生长动力学 The Overall Growth Kinetics生长弥散 Growth Dispersion,工业结晶过程 Industrial Crystallization,四、粒数衡算概念 Chapter 4 Population Balance Concept结晶系统数学模型 Mathematical Model of Crystallization systems粒数衡算 Population Balance通用粒数方程 The General Population Equation分布矩 Moments of The Distribution平均粒度 Average Sizes变异系数 Coefficient of Variation,工业结晶过程 Industrial Crystallization,五、混合悬浮混合产品取出结晶器:一种理想方式 Chapter 5 Mixed Suspension Mixed Product Removal Crystallizer-An Idealized Configuration混合悬浮混合产品取出概念 Mixed Suspension Mixed Product Removal Crystallizer ConceptMSMPR方式的粒数衡算 Population Balance for The MSMPR ConfigurationMSMPR结晶器的粒数密度分布当晶体生长速度与粒径无关时 Population Density Distribution for MSMPR CrystallizerSize Independent Crystal Growth RateMSMPR结晶器的粒数密度分布当晶体生长速度与粒径有关时 Population Density Distribution for MSMPR CrystallizerSize Dependent Crystal Growth Rate,工业结晶过程 Industrial Crystallization,六、粒数影响因素 Chapter 6 Population Functions与MSMPR结晶方式的偏差 Deviations from The MSMPR Crystallizer Configuration分级 Classification,工业结晶过程 Industrial Crystallization,七、结晶动力学的求取 Chapter 7 Derivation of Crystallization Kinetics纯粹结晶动力学的求取 Derivation of Pure Crystallization Kinetics就外推得到的粒数密度数据的解释 Interpretation Population Density Data Obtained Resorting to Extrapolation受粒数函数影响的结晶动力学的求取 Derivation of Crystallization Kinetics from Distributions Affected by Population Functions,工业结晶过程 Industrial Crystallization,八、结晶过程中的物理传递现象 Chapter 8 Physical Transport Phenomena in Crystallization均相液体的混合 Mixing of Homogeneous Liquids固液悬浮物的混合 Mixing of Solid/Liquid Suspensions固液悬浮物中的传质 Mass Transfer in Solid/Liquid Suspensions搅拌槽中的传热 Heat Transfer in Agitated Vessels,工业结晶过程 Industrial Crystallization,九、结晶系统的取样和分析 Chapter 9 Sampling and Analyzing Crystallizing Systems液相样品的取样和分析 Sampling and Analyzing Liquid Phase Samples固相样品的取样和分析 Sampling and Analyzing Solid Phase Samples,工业结晶过程 Industrial Crystallization,十、结晶器设计中基本原理的应用 Chapter 10 The Use of Fundamental Principles in Crystallizer Design 1、物料衡算用于确定结晶器体积 The Use of Mass Balance to Formulate Crystallization Volume 2、粒数衡算概念用于表征产品晶体粒度分布 The Use of The Population Balance Concept to Characterize Product Crystal Size Distributions 3、工业结晶器中结晶动力学与操作条件的相互作用 Interactions Between Crystallization Kinetics and Operation Conditions in Industrial Crystallizers 4、工业结晶过程中的技术问题 Technical Problems in Industrial Crystallization,工业结晶过程 Industrial Crystallization,十一、面向设计的结晶动力学:从小型实验取得的结晶动力学在结晶器设计上的应用Chapter 11 Design Oriented Crystallization Kinetics Obtained in Small Scale Experiments for Crystallization Design1、取得面向设计的结晶动力学的标准过程 Standardized procedure to derive design oriented crystallization kinetics2、标准结晶动力学在结晶器设计中的应用 The Use of Standard Crystallization Kinetics in Crystallizer Design从小型实验取得的结晶动力学用于大型结晶器设计 The Use of Crystallization Kinetics Obtained in Small Scale Experiments for Design of Large Crystallizers,工业结晶过程 Industrial Crystallization,十二、间歇结晶器设计 Chapter 12 Design of Batch Crystallizers间歇结晶操作的概念 Concept of Operation in Batch Crystallization间歇结晶的一个循环 Description of A Cycle in Batch Crystallization间歇过程的结晶周期 Description of A Crystallization Period in A Batch Cycle间歇与连续操作的比较 Comparison of Batch and Continuous Operation不稳定粒数衡算 The Unsteady State Number Balance加晶种间歇结晶器设计:能量传递的最佳控制 Design of Seeded Batch Crystallizers Featuring on Optimal Control of Energy Transfer,工业结晶过程 Industrial Crystallization,十三、连续搅拌槽式结晶器设计 Chapter 13 Design of Continuous Stirred Tank Crystallizer混合产品取出的连续全混结晶器的设计 Design of Continuous Well Mixed Crystallizers with Mixed Product Removal强制内循环连续蒸发结晶器设计 Design of Continuous Evaporative Crystallizers with Forced Internal Circulation细晶消除的全混结晶器设计 Design of Well-Mixed Crystallizers with Fines Removal分级产品取出的全混结晶器设计 Design of Well-Mixed Crystallizers with Classified Product Removal同时消除细晶和分级产品取出的全混结晶器设计 Design of Well-Mixed Crystallizers with Simultaneously Operative Fines Destruction and Classified Product Removal,工业结晶过程 Industrial Crystallization,十四、强制循环蒸发结晶器设计 Chapter 14 Design of Forced Circulation Evaporative Crystallizer引言与工作原理 Introduction and Principles of Operation蒸发结晶衡算 Balances in Evaporative Crystallization固体分级 Solids Classification与粒径有关的晶体生长速率 Size Dependent Growth Rates浓度推动力分布 Distribution of Concentration Driving Force液相流动模型 Liquid Phase Flow Model推动力衡算 Driving Force Balances区域停留时间 Sectional Residence Times拟粒径有关晶体生长速率估算 Evaluation of Pseudo Size-dependent Growth Rates晶体粒径分布预测 Prediction of Crystal Size Distribution,工业结晶过程 Industrial Crystallization,十五、晶浆处理:结晶器-离心机-干燥器系统分析 Chapter 15 Slurry Handling:An Analysis of The System Crysallizer-Centrifuge-Dryer管道设计 Design of Pipe Lines阀门选择 Choice of Valves晶浆预浓缩设备 Magma Prethickeners脱水设备 Dewatering Equipment干燥设备 Drying Equipment,工业结晶过程 Industrial Crystallization,参考书目 ReferencesMullin,J.W.,Crystallisation,2nd ed.Butterworths,London,1972.TQ026.5/YM1中译本:胡维杰、宁桂玲等编译,结晶过程。大连:大连理工大学出版社,1991。TQ026.5/H2Jancic,S.J.and P.A.M.Grootscholten,Industrial Crystallization.Delft University Press,Delft,Holland,1984.TQ026.5/YJ1苏联E.B.哈姆斯基著,古涛、叶铁林译,化学工业中的结晶。化学工业出版社,北京,1984。TQ026.5/H1丁绪淮、谈遒著,工业结晶。化学工业出版社,北京,1985。Journal of Crystal Growth.Tung,H.H.,Paul,E.L.,Midler,M,McCauley,J.A.,Crystallization of Organic Compounds:An Industrial Perspective.New Jercey:John Wiley&Sons,2009.,第一章 工业结晶概论,1.1结晶在工业上的应用 化工、食品、医药、冶金等多领域1.2结晶产品的表征 纯度&强度 形状&外观 晶体粒度分布,众数 mode中值 median size平均尺寸 mean size变异系数 CV,Figure 1.1 Illustration of maximum supersaturation and growth rate at which sound and pure crystals free from inclusions can be obtained.,Figure 1.2 Typical cumulative undersize weight distributions obtained in continuous crystallization.,Figure 1.3 The relative percentage frequency curve showing commonly used average sizes.,CV%(标准差 standard deviation/平均尺寸 mean size)100%,1.3 溶解度和过饱和度,Figure 1.4 Solubility curve for a typical substance.,Gibbs-Thomson 方程,CLC*exp(MY/RTcL)eq.(1.1),式中参数:CL:粒径为L的粒子的溶解度,kg/kg solution C*:大粒子的溶解度,kg/kg solution M:分子量,kg/kgmolK Y:固体粒子的表面能,J/m2 R:气体常数,J/molK c:晶体密度,kg/m3 T:绝对温度,K L:晶体尺寸,m,第二章 成核:机理及来源,成核机理可以区分为以下几种情况:,成核 Nucleation,初级成核 Primary,二次成核 Secondary,均相成核 Homogeneous,多相成核 Heterogeneous,2.1 初级成核,Figure 2.1 The analogy of the states of stability between a simple mechanical system and a crystallizing system.,Figure 2.2 Free energy diagram for homogeneous nucleation indicating the existence of a critical nucleus.,均相成核:G kaL2+kvL3(G)v,(2.3),ka 表面形状因子:定义:表面积=ka L2,kv 体积形状因子:定义:体积=kv L3,L为晶体特征尺寸,对于球形颗粒,面积=d2,如果以d为特征尺寸,则ka=;体积=/6d3,如果以d为特征尺寸,则kv=/6。,对于立方体颗粒,面积=6d2,如果以边长d为特征尺寸,则ka=6;体积=d3,如果以d为特征尺寸,则kv=1。,对式(2.3)求最大值,得:,Lc=-2ka/3kv(G)v-(2.5),得临界尺寸:,多相成核:,0,cos1,GHET0 complete affinity0180,GHETGHOM partial affinity180,cos-1,GHETGHOM complete non-affinity,结论:,2.2 二次成核,二次成核,初始产晶,针状产晶,碰撞产晶,杂质浓度梯度,流体剪切力,二次晶核的来源,Figure 2.3 Type of product crystals obtained in pure stagnant solutions,Figure 2.4 Type of product crystals obtained in impure stagnant solutions,Figure 2.5 Type of product crystals obtained in agitated solutions,影响二次成核的因素,影响二次成核的因素有:过饱和度、冷却速率、搅拌速度、晶种尺寸、晶种数量、杂质等。其中过饱和度是最重要的。,2.3工业结晶器中的成核,Figure 2.6 Crystal sizes and mass depositions on 100 g of 0.1 mm seeds,第三章 晶体生长,3.1 晶体生长中的过程,晶体从溶液中生长过程至少包含以下三步:,1)溶质从溶液主体向晶体表面附近传递,2)晶体表面上发生的某种过程(常称为表面结合过程),3)结晶热的逸散,Figure 3.1 Concentration and temperature profiles in crystallization from solution for a system of exothermic heat of crystallization and normal solubility.,通过膜的传递,静止流体、分子传递:,Ficks law,恒定浓度梯度,溶质向平板的单向扩散:,=D(c-ci)/,-(3.2),湍流情况下:,kd(c-ci),-(3.3),式3.2与式3.3是表达晶体生长的扩散理论的基本方程。,表面结合过程,表面结合过程是发生在晶体表面的历程。,表面结合动力学,表面结合过程与过饱和度、体系的特性和晶体表面条件有关。晶体生长的主要阻力是表面结合过程而不是体积扩散过程。,Figure 3.2 Growth and dissolution rates for potash alum crystalsat 32,GSI=kr(ci-c*)r-(3.4),表面结合过程常用经验关联式:,Arrhenius方程:,kr=kr 0exp(-Er/RT)-(3.5),Bennema 模型:,晶核上的晶核模型:,GSIA5/6exp(-B/)-(3.7),3.2 总的晶体生长过程,总的晶体生长速率应该是浓度推动力及其相应的速度常数的函数,即:,Gf(c,Kd,Kr)-(3.8),表面结合过程为一级(r=1)时:,G=kg(c-c*)-(3.9),r1时:,Gcg-(3.10),3.3 总的晶体生长动力学,与尺寸有关的晶体生长,Figure 3.3 Effect of crystal/solution relative velocity on thegrowth rate of(111)face of potash alum crystals at32,McCabes L定律,G(111)=6.2410-4v0.65cg-(3.11),(111)晶面的生长速率关联式:,=16L0.63cg-(3.12),流化床中得到的生长速率关联式:,Figure 3.4 Comparison between face growth rates of single crystals(smooth curve)and overall growth rates obtained in afluidized bed crystallizer,Figure 3.5 The effect of crystal size L on the overall growthrate of potash alum at 30,传质和表面结合阻力对晶体生长的相对贡献推导,concentration driving force,mass transfer,surfaceintegration,crystal/solutionhydrodynamics,temperature and impurities,overall growth rate,Figure 3.6 Schematic representation of influences exerted by the growth environment upon processes involved in crystal growth.,假定溶解过程仅仅由传质控制,则:,Figure 3.7 Crystal dissolution kinetics for potash alum at 30,Figure 3.8 Surface integration kinetics for potash alum crystals at30.The dotted lines indicate overall growth rates fromwhich these were derived,Figure 3.9 Surface integration kinetics for potash alum crystals at 30 as a function of crystal size and supersaturation,对于总生长动力学、溶解动力学和表面结合动力学对过饱和度都是一级的情况,可以用下式计算总速度常数:,Figure 3.10 Percentage of the total resistance to crystal growth offered by volume diffusion and surface integration process as a function of crystal size for potash alum at 30,晶体生长速率表达式,McCabe and Stevenss model:,G=dL/dt=1.7710-3Lav1.1(c-c*)1.8(3.15),Bransoms model,dL/dt=aRebcn(3.17),连续结晶器中简化为:,dL/dt=avbcn(3.19),dL/dt=aLbcn(3.20),或,Canning and Randolphs model,G=G0(1+a1L+a2L2+anLn)(3.21),Abegg,Stevens and Larsons model(ASL model),G=G0(1+L)b,b1,L0(3.22),3.4生长弥散,在固定过饱和度下,生长速率可以有很大变化。这种现象称为生长速率弥散。,第四章 粒数衡算概念,4.1 结晶系统的数学模型,结晶器模型由基于基本原理的方程组和一个经验生长速率方程组成,为空间和时间的函数。这些一般方程组可以根据具体情况简化。,Figure 4.1 Schematic representation of countercurrentflow between crystals and mother liquor withparameters distributed in axial direction aperfectly classified fluidized bed crystallizer.,Figure 4.2 Schematic representation of a well mixed crystal/solution systemwith lumped parameters a perfectly mixed crystallizer.,表4.1 几种理想情况,第一种情况又可以按照产品取出方式分为二种类型,即:a)混合悬浮混合产品取出结晶器 b)混合悬浮分级产品取出结晶器,4.2 粒数衡算,整个结晶器系统的粒数守恒定律可以写成:,Nin-Nout=Naccumulation(4.1),对于晶体尺寸为l的晶体,总粒数衡算就是:,Nin|l-Nout|l=Naccumulation|l(4.2),由于晶体数在结晶系统内随点和点而不同,所以要考虑粒数密度,严格讲是频率粒数密度:,在稳态操作的结晶系统内,晶体总数是:,总粒数密度:,平均粒数密度:,n(l)=N(l)/V(4.5),单位悬浮体积的晶体数是:,4.3 一般粒数方程,作出下列假设:,悬浮物占据可变体积V,被限制在固定 边界和自由重力表面中,悬浮物进出物流可以认为在径向混合,但 悬浮物本身不必是均匀的,悬浮物中的颗粒在给定的粒径范围内和给 定的悬浮体积单元内连续分布,Figure 4.3 Schematic representation of a flow system containing an arbitrary suspension of particles undergoing various population events.,当晶体粒数守恒定律用点粒数密度 表示时,对于图4.3的方式可得:,(4.7),式中参数:,n:粒数密度,litre-1m-1,:点(x,y,z)处粒径范围L到L+dL的晶粒数,Q:悬浮液体积流率,i,o:下标,表示进口和出口,B(L):体积微元dV内的二次成核,因此B(L)dL是单位体积单位时间产生 的L到L+dL 范围的晶粒数,A(L):体积微元dV内的磨损,因此A(L)dL 是单位体积单位时间产生的L 到L+dL 范围的晶粒数,D(L):体积微元dV内的破碎,因此D(L)dL 是单位体积单位时间由于破碎 产生的L到L+dL 范围的晶粒数;对于因破碎而消失的晶体群可以 认为是负值,(L):体积微元dV内的细晶消除,因此(L)dL 是单位体积单位时间由于细晶 消除而消失的L到L+dL 范围的晶粒数,M(L):体积微元dV内的聚集,因此M(L)dL 是由于聚集而产生的L到L+dL 范围 的晶粒数;对于因聚集而消失的晶体群可以认为是负值,P(L):体积微元dV内的选择性产品取出,因此P(L)dL 是从体系选择性取出的L 到L+dL 范围的晶粒数p,式4.7左边全微分并重排,得到:,合并式4.7和4.8并重排得到:,对于任意范围L1到L2的颗粒,式4.9都应恒等于零,因此:,式4.10为任意悬浮颗粒的一般粒数衡算方程。,在稳态条件下,所有时间导数都为零;又如进料中可能不含晶体,则ni0。,如果结晶器是全混的,则点粒数密度 可用平均密度n代替,即:,4.4 分布矩,-zeroth moment(the total number of crystals per unit volume of crystal suspension)(4.13),-first moment(the total length of crystals per unit volume of crystal suspension)(4.14),-second moment(multiplied by a surface factorgives the total crystal surface area per unit volume of crystal suspension)(4.15),-third moment(multiplied by a volume factor gives the total volume of crystals per unit volume of crystal suspension,i.e.,volume fraction of solids)(4.16),有几种方法用分布矩来表示晶体粒度分布,即:,累积重量百分数(式4.23)是最常用的表达粒径分布的方法。,Figure 4.4 Typical cumulative undersize weight distributions obtained in continuous crystallization.,4.5 平均尺寸,Figure 4.5 The relative percentage frequency curve showing commonly used average sizes.,众数:最频繁发生的值通过相对频率曲线的最高点,即该值处的频率密度最大。,对于重量分布的情况,有:,中值:图4.5中的中线将曲线下的面积分为相等的二部分,即累积频率曲线的50尺寸处。对于重量分布的情况:,平均值:平均值的垂直线通过与分布曲线相同形状的均匀厚度和密度的纸的重心。重量分布下:,4.6 变异系数,标准偏差可以表示成分布均值的百分数,这个百分数就叫做变异系数。,从粒数密度分布求变异系数的推导,变异系数定义为:,重量分布的标准偏差为:,因此,变异系数可以用分布矩表示如下:,从实验数据估算变异系数,Figure 4.6 Size distributions for various products from“Oslo”crystallizers,For cumulative weight percent undersize:,For cumulative weight percent oversize:,这种方法严格讲只适用于累积尺寸百分数曲线在算术概率坐标纸上为直线的情况。,第五章 混合悬浮-混合产品取出结晶器,5.1混合悬浮混合产品取出结晶器概念,Figure 5.1 The continuous MSMPR crystallizer model.,5.2 MSMPR方式的粒数衡算,一般粒数衡算方程,进一步简化可得:,对于MSMPR,一般粒数衡算方程(式4.10)简化为:,5.3 MSMPR结晶器的粒数密度分布当晶体 生长速度与粒径无关时,对于MSMPR方式,稳态操作,生长速率与晶体尺寸无关的情况,式5.2进一步简化成:,积分得:,式5.4 表明ln n 与晶体尺寸L成直线关系。,Figure 5.2 Experimental sodium chloride MSMPR crystallizer(a)with a typicalpopulation density plot(b)obtained at steady state,MSMPR结晶器中的众数,合并式4.25和式5.4得到:,LM3G(5.6),MSMPR结晶器的中值,结合式4.26和式5.4得到:,Lm3.67G(5.8),MSMPR结晶器的平均值,合并式4.27和式5.4得到:,MSMPR结晶器的变异系数,合并式4.31和式5.4得到:,CV50(5.11),MSMPR结晶器的悬浮密度,合并式4.16和式5.4得到:,5.3 MSMPR结晶器的粒数密度分布当晶 体生长速度与粒径有关时,几个假设:,a)所有晶体的形状相似,可以用一个特征尺寸L表示,b)线性生长速率与尺寸有关,可用ASL生长速率模型表示,G(L)=G0(1+L)b for b1,L0,c)晶体的聚集、磨损、破碎不发生,将式5.2与ASL模型合并,并积分,得到:,当 b=0时,式5.14就表示与尺寸无关的生长速率的粒度分布。如果定义为1/G0,将G0代入式5.14得到:,式5.15取对数,得到:,当 b=0,式5.16就简化成式5.4。,式5.16可以简化成无因次形式:,令,y=n/n0(5.17),x=L=L/G0(5.18),则式5.16可以写成,Figure 5.3 Dimensionless population density distributions for the MSMPR configurations at conditions of size dependent crystal growth,Figure 5.4 Typical population density plot obtained in the1.3 litre continuous MSMPR crystallizer forpotash alum/water system at 30,面积分布函数,面积分布函数a(L)可以定义为单位悬浮体积的尺寸为L的晶体的总面积,即:,a(L)=kanL2,将式5.15代入并无因次化,得:,其中y(a)为 无因次面积分布,定义为2a(L)/kan0。,Figure 5.5 Dimensionless area distribution function for a steadystate MSMPR crystallizer(equation 5.20)showing thewidening effect of size dependent crystal growth rateon the product crystal size distribution,重量分布函数,重量分布函数w(L)可以定义为单位晶体悬浮体积内尺寸L的晶体的总重量,即:,w(L)=nL3kvc,将式5.15代入并无因次化,得:,其中:,Figure 5.6 Dimensionless weight distribution function for a steadystate MSMPR crystallizer(equation 5.21)showing thewidening effect of size dependent growth rate on theproduct crystal size distribution,重量分布函数也可以用分布矩表示。累积重量百分数是最常用的方法。,将式4.23与式5.15合并,并整理成无因次形式,得到:,第六章 粒数影响因素,6.1偏离MSMPR结晶器方式,大规模工业结晶器中通常不能满足前面采用的简化条件。,Figure 6.1 Typical population density plots obtained in the 1500 litre NaCl crystallizer for two different suspension levels with reference to the centre line of tangential inlet,大规模氯化钠结晶器中的粒数密度分布的特征是:,尺寸小于约100m时,粒数密度随晶体尺寸减小而迅速增加。,尺寸在约100m 和300m 之间有一个平台,显示一个最高点 和一个最低点。,尺寸大于约300m 时,粒数密度随晶体粒度增加迅速降低。,根据操作条件的不同,分布的头尾部分斜率以及平台部分宽度 可以不同,但上图所示的特征形状却保持不变。,几点考虑:,大规模氯化钠结晶器偏离MSMPR方式,而55升的小规模结晶 器接近MSMPR方式;,粒数函数在起作用,而在55升的小规模结晶器中粒数函数可能 被抑制了;