《层次分析模型》PPT课件.ppt
第四讲 离散模型,8.1 层次分析模型8.2 循环比赛的名次,y,离散模型,离散模型:差分方程、整数规划、图论、对策论、网络流、,分析社会经济系统的有力工具,只用到代数、集合及图论(少许)的知识,8.1 层次分析模型,背景,日常工作、生活中的决策问题,涉及经济、社会等方面的因素,作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化,Saaty于1970年代提出层次分析法 AHP(Analytic Hierarchy Process),AHP一种定性与定量相结合的、系统化、层次化的分析方法,目标层,O(选择旅游地),准则层,方案层,一.层次分析法的基本步骤,例.选择旅游地,如何在3个目的地中按照景色、费用、居住条件等因素选择.,“选择旅游地”思维过程的归纳,将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。,通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。,将上述两组权重进行综合,确定各方案对目标的权重。,层次分析法将定性分析与定量分析结合起来完成以上步骤,给出决策问题的定量结果。,层次分析法的基本步骤,成对比较阵和权向量,元素之间两两对比,对比采用相对尺度,设要比较各准则C1,C2,Cn对目标O的重要性,A成对比较阵,A是正互反阵,要由A确定C1,Cn对O的权向量,选择旅游地,成对比较的不一致情况,允许不一致,但要确定不一致的允许范围,考察完全一致的情况,成对比较阵和权向量,成对比较完全一致的情况,A的秩为1,A的唯一非零特征根为n,A的任一列向量是对应于n 的特征向量,A的归一化特征向量可作为权向量,对于不一致(但在允许范围内)的成对比较阵A,建议用对应于最大特征根的特征向量作为权向量w,即,一致阵性质,成对比较阵和权向量,2 4 6 8,比较尺度aij,Saaty等人提出19尺度aij 取值1,2,9及其互反数1,1/2,1/9,心理学家认为成对比较的因素不宜超过9个,用13,15,117,1p9p(p=2,3,4,5),d+0.1d+0.9(d=1,2,3,4)等27种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现,19尺度较优。,便于定性到定量的转化:,成对比较阵和权向量,一致性检验,对A确定不一致的允许范围,已知:n 阶一致阵的唯一非零特征根为n,可证:n 阶正互反阵最大特征根 n,且=n时为一致阵,定义一致性指标:,CI 越大,不一致越严重,为衡量CI 的大小,引入随机一致性指标 RI随机模拟得到aij,形成A,计算CI 即得RI。,定义一致性比率 CR=CI/RI,当CR0.1时,通过一致性检验,Saaty的结果如下,“选择旅游地”中准则层对目标的权向量及一致性检验,准则层对目标的成对比较阵,最大特征根=5.073,权向量(特征向量)w=(0.263,0.475,0.055,0.090,0.110)T,一致性指标,随机一致性指标 RI=1.12(查表),一致性比率CR=0.018/1.12=0.0160.1,通过一致性检验,组合权向量,记第2层(准则)对第1层(目标)的权向量为,同样求第3层(方案)对第2层每一元素(准则)的权向量,方案层对C1(景色)的成对比较阵,方案层对C2(费用)的成对比较阵,最大特征根 1 2 n,权向量 w1(3)w2(3)wn(3),组合权向量,RI=0.58(n=3),CIk 均可通过一致性检验,w(2)0.2630.4750.0550.0900.110,方案P1对目标的组合权重为0.5950.263+=0.300,方案层对目标的组合权向量为(0.300,0.246,0.456)T,组合权向量,第2层对第1层的权向量,第3层对第2层各元素的权向量,构造矩阵,则第3层对第1层的组合权向量,第s层对第1层的组合权向量,其中W(p)是由第p层对第p-1层权向量组成的矩阵,层次分析法的基本步骤,1)建立层次分析结构模型,深入分析实际问题,将有关因素自上而下分层(目标准则或指标方案或对象),上层受下层影响,而层内各因素基本上相对独立。,2)构造成对比较阵,用成对比较法和19尺度,构造各层对上一层每一因素的成对比较阵。,3)计算权向量并作一致性检验,对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为权向量。,4)计算组合权向量(作组合一致性检验*),组合权向量可作为决策的定量依据。,二.层次分析法的广泛应用,应用领域:经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。,处理问题类型:决策、评价、分析、预测等。,建立层次分析结构模型是关键一步,要有主要决策层参与。,构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。,例1 国家实力分析,例2 工作选择,例3 横渡江河、海峡方案的抉择,例3 横渡江河、海峡方案的抉择,例4 科技成果的综合评价,三.层次分析法的若干问题,正互反阵的最大特征根是否为正数?特征向量是否为正向量?一致性指标能否反映正互反阵接近一致阵的程度?,怎样简化计算正互反阵的最大特征根和特征向量?,为什么用特征向量作为权向量?,当层次结构不完全或成对比较阵有空缺时怎样用层次分析法?,1.正互反阵的最大特征根和特征向量的性质,定理1 正矩阵A 的最大特征根是正单根,对应正特征向量w,且,定理2 n阶正互反阵A的最大特征根 n,=n是A为一致阵的充要条件。,2.正互反阵最大特征根和特征向量的简化计算,精确计算的复杂和不必要,简化计算的思路一致阵的任一列向量都是特征向量,一致性尚好的正互反阵的列向量都应近似特征向量,可取其某种意义下的平均。,和法取列向量的算术平均,精确结果:w=(0.588,0.322,0.090)T,=3.010,根法取列向量的几何平均,幂法迭代算法,1)任取初始向量w(0),k:=0,设置精度,2)计算,3)归一化,5)计算,简化计算,4)若,停止;否则,k:=k+1,转2,3.特征向量作为权向量成对比较的多步累积效应,问题,一致阵A,权向量w=(w1,wn)T,aij=wi/wj,A不一致,应选权向量w使wi/wj与 aij相差尽量小(对所有i,j)。,非线性最小二乘,线性化对数最小二乘,结果与根法相同,按不同准则确定的权向量不同,特征向量有什么优点。,成对比较,Ci:Cj(直接比较),aij 1步强度,aisasj Ci通过Cs 与Cj的比较,aij(2)2步强度,更能反映Ci对Cj 的强度,多步累积效应,体现多步累积效应,定理1,特征向量体现多步累积效应,4.不完全层次结构中组合权向量的计算,完全层次结构:上层每一元素与下层所有元素相关联,不完全层次结构,设第2层对第1层权向量w(2)=(w1(2),w2(2)T已定,第3层对第2层权向量w1(3)=(w11(3),w12(3),w13(3),0)Tw2(3)=(0,0,w23(3),w24(3)T已得,讨论由w(2),W(3)=(w1(3),w2(3)计算第3层对第1层权向量w(3)的方法,例:评价教师贡献的层次结构,P1,P2只作教学,P4只作科研,P3兼作教学、科研。,C1,C2支配元素的数目不等,层次分析法的优点,系统性将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策系统分析(与机理分析、测试分析并列);,实用性定性与定量相结合,能处理传统的优化方法不能解决的问题;,简洁性计算简便,结果明确,便于决策者直接了解和掌握。,层次分析法的局限,囿旧只能从原方案中选优,不能产生新方案;,粗略定性化为定量,结果粗糙;,主观主观因素作用大,结果可能难以服人。,8.2 循环比赛的名次,n支球队循环赛,每场比赛只计胜负,没有平局。,根据比赛结果排出各队名次,方法1:寻找按箭头方向通过全部顶点的路径。,312456,146325,方法2:计算得分:1队胜4场,2,3队各胜3场,4,5队各胜2场,6队胜1场。,2,3队,4,5队无法排名,6支球队比赛结果,32,4 5,循环比赛的结果竞赛图每对顶点间都有边相连的有向图,3个顶点的竞赛图,名次,1,2,3,(1,2,3)并列,1,2,3,4,2,(1,3,4),(1,3,4),2,4个顶点的竞赛图,名次,(1,2),(3,4),1,2,3,4?,竞赛图的3种形式,具有唯一的完全路径,如(1);,双向连通图任一对顶点存在两条有向路径相互连通,如(4);,其他,如(2),(3)。,竞赛图的性质,必存在完全路径;,若存在唯一的完全路径,则由它确定的顶点顺序与按得分排列的顺序一致,如(1)。,双向连通竞赛图G=(V,E)的名次排序,邻接矩阵,得分向量,双向连通竞赛图的名次排序,对于n(3)个顶点的双向连通竞赛图,存在正整数r,使邻接矩阵A 满足Ar 0,A称素阵,素阵A的最大特征根为正单根,对应正特征向量s,且,排名为1,2,4,3,1,2,3,4?,6支球队比赛结果,排名次序为1,3,2,5,4,6,