欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《多元积分学》PPT课件.ppt

    • 资源ID:5488918       资源大小:995.11KB        全文页数:69页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《多元积分学》PPT课件.ppt

    G.F.B.Riemann(1826-1866),只有在微积分发明之后,物理学才成为一门科学.只有在认识到自然现象是连续的之后,构造抽象模型的努力 才取得了成功。-黎曼,多元函数积分学,定积分(Definite Integral),二重积分(Double Integral),三重积分(Triple Integral),性质,直角坐标,极坐标,曲线坐标,直角坐标,柱面坐标,球面坐标,曲面坐标,应用,二重积分的换元法(Change of Variable in Double Integral),三重积分的换元法(Change of Variable in Triple Integral),容易验证,,柱坐标(Cylindrical Coordinate)变换的Jacobi行列式为,球坐标(Spherical Coordinate)变换的Jacobi行列式为,广义球坐标变换的Jacobi行列式为,其中,二重积分的对称性,使用对称性时应注意:,、积分区域关于坐标轴的对称性;,、被积函数在积分区域上的关于二个 积分变量的奇偶性.,三重积分的对称性,使用对称性时应注意:,、积分区域关于坐标面的对称性;,、被积函数在积分区域上的关于三个 坐标轴(三个变量)的奇偶性.,二重积分与曲线积分的联系(Green公式),三重积分与曲面积分的联系(Gauss公式),曲面积分与曲线积分的联系(Stokes公式),空间曲线积分与路径无关的四个等价命题,条件,等价命题,一.计算题,重积分计算的关键:,1.选择合适的坐标系,2.确定合适的积分次序以及积分限,(综合考虑积分区域和被积函数),例 1,计算:,解,考虑用极坐标变换先弄清直角坐标系下的积分区域 D,,由此,可以画出直角系下的积分区域的图形,,例2,例3,解,由对称性,例4 计算,解 曲面坐标变换的目的,(1)使积分区域变 得尽量简单,(2)简化被积函数及计算。,引入坐标变换:,例5 设心脏线的方程为,求它与极轴围成的平面,图形绕极轴所得旋转体的体积。,解,若视极轴为 z 轴,则,极坐标 恰好是球坐标,的,于是体积,例6,解,由对称性,例7,解,于是,例8,解,二.证明题,例1,证明:采用极坐标,将式中r的换成x,即得证.,由对称性知,例2,证,证明:,由积分区域D关于y=x对称,所以,从而,例3,例4,解:,例4,例5,例 6,分析:,则本题得证.,例7,证明,例 8,证,由积分中值定理有,例 9,证,由积分中值定理有,例10,证,例11,证,由题设条件可得,故有,(分部积分),(分部积分),由分部积分法得,故,证,证,解,(2),由(1)知,设u在闭曲线L:,所围闭区域D上有连续二阶偏导数,且,求,.其中,为u沿D边界外法线的方向导数.,例16,解:设曲线L上任意一点,处的切向量为,法向量为,,注意到,,于是,再由Green 公式有,.,

    注意事项

    本文(《多元积分学》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开