欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《因子分析使用帮助》PPT课件.ppt

    • 资源ID:5483172       资源大小:935KB        全文页数:80页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《因子分析使用帮助》PPT课件.ppt

    第三讲 因子分析,Factor Analysis,目 录,1 引言2 因子分析模型 3 因子载荷矩阵的估计方法4 因子旋转(正交变换)5 因子得分 6 因子分析的SPSS操作,因子分析(factor analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显变量(Observed Variable),而假想变量是不可观测的潜变量(Latent Variable),称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。,1 引 言,但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:,称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,即不被包含的部分,称为特殊因子。,注:因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明确的实际意义;主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。,2 因子分析模型,一、数学模型,设 个变量,如果表示为,称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:,不相关;,即 互不相关,且各自的方差为1。,即各 之间互不相关,且各自的方差不一定相等。,用矩阵的表达方式:,二、因子分析模型的性质,1、原始变量X的协方差矩阵的分解,D的主对角线上的元素值越小,则公共因子共享的成分越多。,2、因子载荷不是惟一的,设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为,且满足条件因子模型的条件,三、因子载荷矩阵中的几个统计特征,1、因子载荷aij的统计意义,因子载荷 是第i个标准化变量与第j个公共因子的相关系数,模型为,在上式的左右两边乘以,再求数学期望,根据公共因子的模型性质,有,(载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,相关的密切程度越高。注意标准化变量的方差为1。,2、变量共同度的统计意义,定义:变量 的共同度是因子载荷矩阵的第i行的元素的平方和。记为,统计意义:,两边求方差:,所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。,(注意 为标准化变量),3、公共因子 方差贡献的统计意义,因子载荷矩阵中各列元素的平方和 称为第j个公共因子 对 X 的所有分量 的方差贡献和,它衡量了第j个公共因子 在全体公共因子中的相对重要性。,3 因子载荷矩阵的估计方法,设随机向量 的均值为,协方差为,为的特征根,为对应的标准化特征向量,则,(一)主成分分析法,上式给出的表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的p-m项的贡献,有,(二)主因子法,主因子方法是对主成分方法的修正,假定我们首先对变量进行标准化变换。设 R=AA+D R*=AA=R-D称R*为约相关矩阵。R*对角线上的元素是,而不是1。,直接求R*的前p个特征根和对应的正交特征向量。得如下的矩阵:,当特殊因子 的方差不大且已知的,问题非常好解决。,在实际的应用中,特殊因子方差矩阵一般都是未知的,可以通过一组样本来估计。估计的方法有如下几种:,首先,求 的初始估计值,构造出,1)取,在这个情况下主因子解与主成分解等价;2)取,为xi与其他所有的原始变量xj的复相关系数的平方,即xi对其余的p-1个xj的回归方程的判定系数,这是因为xi 与公共因子的关系是通过其余的p-1个xj 的线性组合联系起来的;,3)取,这意味着取xi与其余的xj的简单相关系数的绝对值最大者;,4)取,其中要求该值为正数。,5)取,其中 是 的对角元素。,例 假定某地固定资产投资率,通货膨胀率,失业率,相关系数矩阵为试用主成分分析法求因子分析模型。,特征根为:,可取前两个因子F1和F2为公共因子,第一公因子F1物价就业因子,对X的贡献为1.55。第二公因子F2为投资因子,对X的贡献为0.85。共同度分别为1,0.706,0.706。,4 因子旋转(正交变换),建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。目的是使因子载荷阵的结构简化,使载荷矩阵每列或行的元素平方值向0和1两极分化。有三种主要的正交旋转法。四次方最大法、方差最大法和等量最大法。,(一)为什么要旋转因子,百米跑成绩 跳远成绩 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩,奥运会十项全能运动项目得分数据的因子分析,因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表,通过旋转,因子有了较为明确的含义。百米跑,跳远和 400米跑,需要爆发力的项目在 有较大的载荷,可以称为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。,方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。,(二)旋转方法,变换后因子的共同度,设正交矩阵,做正交变换,变换后因子的共同度没有发生变化!,(三)旋转结果,变换后因子贡献,设正交矩阵,做正交变换,变换后因子的贡献发生了变化!,5 因子得分,(一)因子得分的概念,前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子作为自变量来做回归分析,对模型进行诊断,进一步分析原始数据(如对样本进行分类或评价),这就需要我们对公共因子进行测度,即给出公共因子的值。,例1 人均要素变量因子分析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人),Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1-0.21522-0.27397 0.89092 X2 0.63973-0.28739-0.28755 X3-0.15791 0.06334 0.94855 X4 0.95898-0.01501-0.07556 X5 0.97224-0.06778-0.17535 X6-0.11416 0.98328-0.08300 X7-0.11041 0.97851-0.07246,X1=-0.21522F1-0.27397F2+0.89092F3 X3=-0.15791F1+0.06334F2+0.94855F3,Standardized Scoring Coefficients FACTOR1 FACTOR2 FACTOR3 X1 0.05764-0.06098 0.50391 X2 0.22724-0.09901-0.07713 X3 0.14635 0.12957 0.59715 X4 0.47920 0.11228 0.17062 X5 0.45583 0.07419 0.10129 X6 0.05416 0.48629 0.04099 X7 0.05790 0.48562 0.04822,F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7,前三个因子得分,例2 国民生活质量的因素分析 国家发展的最终目标,是为了全面提高全体国民的生活质量,满足广大国民日益增长的物质和文化的合理需求。在可持续发展消费的统一理念下,增加社会财富,创自更多的物质文明和精神文明,保持人类的健康延续和生生不息,在人类与自然协同进化的基础上,维系人类与自然的平衡,达到完整的代际公平和区际公平(即时间过程的最大合理性与空间分布的最大合理化)。从1990年开始,联合国开发计划署(UYNP)首次采用“人文发展系数”指标对于国民生活质量进行测度。人文发展系数利用三类内涵丰富的指标组合,即人的健康状况(使用出生时的人均预期寿命表达)、人的智力程度(使用组合的教育成就表达)、人的福利水平(使用人均国民收入或人均GDP表达),并且特别强调三类指标组合的整体表达内涵,去衡量一个国家或地区的社会发展总体状况以及国民生活质量的总水平。,在这个指标体系中有如下的指标:X1预期寿命X2成人识字率X3综合入学率X4人均GDP(美圆)X5预期寿命指数X6教育成就指数X7人均GDP指数,旋转后的因子结构 Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 0.38129 0.41765 0.81714 X2 0.12166 0.84828 0.45981 X3 0.64803 0.61822 0.22398 X4 0.90410 0.20531 0.34100 X5 0.38854 0.43295 0.80848 X6 0.28207 0.85325 0.43289 X7 0.90091 0.20612 0.35052 FACTOR1为经济发展因子 FACTOR2为教育成就因子 FACTOR3为健康水平因子,被每个因子解释的方差和共同度 Variance explained by each factor FACTOR1 FACTOR2 FACTOR3 2.439700 2.276317 2.009490 Final Communality Estimates:Total=6.725507 X1 X2 X3 X4 X5 0.987530 0.945796 0.852306 0.975830 0.992050 X6 X7 0.994995 0.976999,Standardized Scoring Coefficients标准化得分系数 FACTOR1 FACTOR2 FACTOR3 X1-0.18875-0.34397 0.85077 X2-0.24109 0.60335-0.10234 X3 0.35462 0.50232-0.59895 X4 0.53990-0.17336-0.10355 X5-0.17918-0.31604 0.81490 X6-0.09230 0.62258-0.24876,例3 生育率的影响因素分析,生育率受社会、经济、文化、计划生育政策等很多因素影响,但这些因素对生育率的影响并不是完全独立的,而是交织在一起,如果直接用选定的变量对生育率进行多元回归分析,最终结果往往只能保留两三个变量,其他变量的信息就损失了。因此,考虑用因子分析的方法,找出变量间的数据结构,在信息损失最少的情况下用新生成的因子对生育率进行分析。选择的变量有:多子率、综合节育率、初中以上文化程度比例、城镇人口比例、人均国民收入。下表是1990年中国30个省、自治区、直辖市的数据。,特征根与各因子的贡献,没有旋转的因子结构,在这个例子中我们得到了两个因子,第一个因子是社会经济发展水平因子,第二个是计划生育因子。有了因子得分值后,则可以利用因子得分为变量,进行其他的统计分析。,方差最大旋转后的因子结构,标准化得分函数,6 因子分析的SPSS操作,原始数据:20口盐泉的化学成分。建立Excel数据表文件(数据存放在Sheet 1),打开SPSS 16.0;在SPSS开始向导窗口,选定“Create new query using Database Wizard”,点击“OK”按钮,进入“Database Wizard”向导窗口,在“Database Wizard”向导窗口,选定“Excel Files”,点击“Next”按钮,在“ODBC Driver Login”向导窗口,使用“Browse”按钮,搜索选定Excel数据源文件,点击“Open”按钮,点击“OK”按钮,在“Database Wizard”向导窗口,在其左边的窗口中选定Excel数据表(本例为Sheet 1),点击位于中间的“箭头”按钮,将该数据表(本例为Sheet 1)移入到右边的空白窗口之中,点击“Next”按钮,第二次点击“Next”按钮,第三次点击“Next”按钮,在“Database Wizard”向导窗口,使用“Browse”按钮指定文件夹,命名SPSS数据转换文件(*.spq)(建议采用与Excel数据文件相同的名称),点击“Save”按钮,点击“Next”按钮,点击“Finish”按钮,自动回到SPSS 16.0视窗,显示为未命名的SPSS数据集编辑窗口,在SPSS数据集编辑窗口的底部,点击“Variable View”,定义各变量的数据类型、宽度、小数位数等,在SPSS数据集编辑窗口的底部,点击“Data View”,显示出最终的数据集,利用该数据集,在SPSS主菜单,选定“AnalyzeData ReductionFactor”点击,得到因子分析引导窗口“Factor Analysis”,在因子分析引导窗口“Factor Analysis”,将待分析的原始变量用箭头输入到右边的“Variables”窗口,在因子分析引导窗口“Factor Analysis”,点击“Descriptives”按钮,进入“Descriptives”对话框,从中选取需要的统计量,选完后点击“Continue”,在因子分析引导窗口“Factor Analysis”,点击“Extraction”按钮,进入“Extraction”对话框,从中选择提取因子的方法,选完后点击“Continue”,在因子分析引导窗口“Factor Analysis”,点击“Rotation”按钮,进入“Rotation”对话框,从中选择旋转方法,选完后点击“Continue”,在因子分析引导窗口“Factor Analysis”,点击“Scores”按钮,进入“Scores”对话框,从中选择公共因子得分方法,选完后点击“Continue”,在因子分析引导窗口“Factor Analysis”,点击“Options”按钮,进入“Options”对话框,从中选择有关选项,选完后点击“Continue”,在因子分析引导窗口“Factor Analysis”,点击“OK”按钮,运行因子分析程序,本例的因子分析运行结果之一:程序描述(Log),本例的因子分析运行结果之二:观测变量的描述统计与相关系数矩阵,本例的因子分析运行结果之三:变量共同度与总方差分解表(只需提取3个因子),本例的因子分析运行结果之四:因子-特征值碎石图,本例的因子分析运行结果之五:因子载荷矩阵与降维相关系数,本例的因子分析运行结果之六:旋转后的因子载荷矩阵与因子转换矩阵,本例的因子分析运行结果之七:因子载荷图,本例的因子分析运行结果之八:因子得分系数矩阵,在SPSS主菜单点击“FilePrint”,即可打印SPSS运算结果;将SPSS文件保存到指定的文件夹,注意应分别保存两类SPSS文件,包括SPSS数据集文件(*.sav)和SPSS运算结果文件(*.spv)。,

    注意事项

    本文(《因子分析使用帮助》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开