欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《力学的变分原理》PPT课件.ppt

    • 资源ID:5472199       资源大小:256.50KB        全文页数:25页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《力学的变分原理》PPT课件.ppt

    力学的变分原理,人们为了追求自然规律的统一、和谐,按照科学的审美观点,总是力图用尽可能少的原理(公理)去概况尽可能多的规律。,力学原理是指不需要经过证明而在实践基础上靠归纳得到的力学的最基本、最普遍的规律。原理的正确性和适用范围是由通过它导出的定理、方程及其解与实践的比较来证实的。力学原理是构成力学理论体系的基础与核心。,比如,牛顿提出的力学三大定律,就是力学的基本原理,由这些基本原理出发,经过严格的逻辑推理和数学演绎,可以获得经典力学的整个理论框架。,力学原理可以分为两大类:不变分原理和变分原理。每一类又可分为微分形式和积分形式。,不变分原理是反映力学系统真实运动的普遍规律。如果原理本身只表明某一瞬时状态系统的运动规律,称为微分原理(如达朗贝尔原理)。如果原理是说明一有限时间过程系统的运动规律,则称为积分原理(如机械能守恒原理)。,而变分原理则不同。它提供一种准则,根据这种准则,可以把力学系统的真实运动与相同条件下约束所允许的一切可能运动区别开来,从而确定系统的真实运动。如果准则是对某一瞬时状态而言的,则该原理称为微分变分原理(如虚位移原理,它提供了区别非自由质点系的真实平衡位置和约束所允许的邻近的可能平衡位置的准则。动力学普遍方程也是微分变分原理)。如果准则是对一有限时间过程而言的,则该原理称为积分变分原理(哈密顿原理和拉格朗日最小作用量原理),哈密顿原理是分析力学的基本原理。它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来。也就是说,由它出发,也可得到经典力学的整个框架。,变分原理的思想,不仅在力学中,而且在物理学科的其他领域中,都具有重要的意义和应用价值。力学的变分原理是变分法在力学中的应用。先介绍泛函和变分法的基本知识。,变分法简介,1.泛函的概念,(1)函数的概念,设 和 是两个变量,是一个给定的数集。如果对 中的每一个数,变量 按确定关系总有一个确定的数值与之对应,则称 是 的函数,记作,称为自变量,称为 因变量。对于多元函数,记作。,(2)泛函的概念,给定一个由任何对象组成的集合,这里所说的任何对象可以是数、数组、几何图形,也可以是函数或某系统的运动状态等。设集合 中的元素用 表示,如果对于集合中的每一个元素 对应一个数,则称 是 的泛函,记作。有时泛函可以看做函数,函数也可以看做泛函。函数表示的是数与数的一一对应关系,而泛函表示的是函数与数的一一对应的关系。函数概念可作为泛函概念的特殊情况。,2.变分法简介,(1)变分法的研究对象,变分法是研究求泛函的极值的方法。凡有关求泛函极值的问题都称作变分问题。,(2)变分的概念,变分分等时变分和全变分两种,全变分又称非等时变分。我们这里主要介绍等时变分。,或:,如果自变量t保持不变,而函数q=q(t)本身形式发生微小变化,则得另一条曲线,如图中虚线所示,显然这种曲线有无数条。令式中 是一个参数,为无穷小量。如果,即得函数;如果取其他值,即得一些与 非常相近的函数。因此上式表示的是一族依赖于参数 的函数,相应的是一族非常接近的曲线。式中,是t的连续可微函数。在瞬时t,由函数本身形式的微小变化而得的微小增量的主部 称为函数的变分:由于是在瞬时t,不考虑时间t的变化,这种变分称为等时变分。图中的 和 表示了函数的变分与微分的区别。,变分与微分的区别变分:自变量不变,仅由于函数本身形式 的微小改变而得到的函数的改变;微分:由于自变量的 微增量而引起 的函数的微增 量。,变分的运算法则:由于函数取等时变分时,自变量t保持不变,变分运算与时间无关,则任一连续函数 q=q(t)的变分与微分可以交换:即(b)在积分的上、下限不变的条件下,函数对自变量的积分的变分,等于该函数的变分对该自变量的积分。总之,变分的导数等于导数的变分;变分的积分等于积分的变分。,(3)变分法,哈密顿Hamilton原理,提出了质点系的真实运动与在质点系真实运动邻近,且为约束所能允许的可能运动的区分准则。,上式仅仅适用于保守系统,将L=T-V 代入该式则得:对于非保守系统:式中还应包括作用于体系上的非保守力(包括阻尼力及任一外荷)所作的功,即:(为由非保守力决定的广义力),该方法与虚功方法的(不同)区别 应用哈密顿原理推导体系的运动方程,不明显使用惯性力和弹性力,而分别被动能和位能的变分项所代替。优点:它只与纯粹的标量能量有关 虚功法中:功本身是标量,但计算功的 力和位移都是矢量。,Hamilton原理在静力学中的应用 应用于静力学中时,式(1-4)中的动能项消失,剩余的项是不随时间变化的,于是方程简化为:(1-5)广泛应用于静力分析中的,著名的最小位能原理,

    注意事项

    本文(《力学的变分原理》PPT课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开