欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《分类计数原理》PPT课件.ppt

    • 资源ID:5470390       资源大小:238.50KB        全文页数:23页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《分类计数原理》PPT课件.ppt

    ,一、复习回顾:,两个计数原理的内容是什么?解决两个计数原理问题需要注意什么问题?有哪些技巧?,1、分类加法计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法在第n类办法中有mn种不同的方法.那么完成这件事共有 种不同的方法.,2、分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法.那么完成这件事共有 种不同的方法.,回答的都是有关做一件事的不同方法种数的问题,完成一件事,共有n类办法,关键词“分类”,区别1,完成一件事,共分n个步骤,关键词“分步”,区别2,区别3,每类办法都能独立地完成这件事情,它是独立的、一次的、且每次得到的是最后结果,只须一种方法就可完成这件事。,每一步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事。,各类办法是互相独立的。,各步之间是互相关联的。,即:类类独立,步步关联。,例1.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?,解:(1)5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件故报名方法种数为44444=种.,(2)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种故有n=5=种.,练习:,三个比赛项目,六人报名参加。)每人参加一项有多少种不同的方法?)每项人,且每人至多参加一项,有多少种不同的方法?)每项人,每人参加的项数不限,有多少种不同的方法?,例1 用0,1,2,3,4,5这六个数字,(1)可以组成多少个各位数字不允许重复的三位的奇数?(2)可以组成多少个各位数字不重复的小于1000的自然数?(3)可以组成多少个大于3000,小于5421且各位数字不允许重复的四位数?,升华发展,一、排数字问题,1、将数字1,2,3,4,填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有_种,引申:,号方格里可填,三个数字,有种填法。号方格填好后,再填与号方格内数字相同的号的方格,又有种填法,其余两个方格只有种填法。所以共有3*3*1=9种不同的方法。,二、映射个数问题:,例2 设A=a,b,c,d,e,f,B=x,y,z,从A到B共有多少种不同的映射?,三、染色问题:,例3 有n种不同颜色为下列两块广告牌着色,要求在四个区域中相邻(有公共边界)区域中不用同一种颜色.(1)若n=6,为(1)着色时共有多少种方法?(2)若为(2)着色时共有120种不同方法,求n(1)(2),、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?,解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1 种,第四步,m4=1 种,所以根据乘法原理,得到不同的涂色方案种数共有 N=3 2 11=6 种。,、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?,若用2色、4色、5色等,结果又怎样呢?,答:它们的涂色方案种数分别是 0、4322=48、5433=180种等。,思考:,分析:如图,A、B、C三个区域两两相邻,A与D不相邻,因此A、B、C三个区域的颜色两两不同,A、D两个区域可以同色,也可以不同色,但D与B、C不同色。由此可见我们需根据A与D同色与不同色分成两大类。,解:先分成两类:第一类,D与A不同色,可分成四步完成。第一步涂A有5种方法,第二步涂B有4种方法;第三步涂C有3种方法;第四步涂D有2种方法。根据分步计数原理,共有5432120种方法。,根据分类计数原理,共有120+60180种方法。,第二类,A、D同色,分三步完成,第一步涂A和D有5种方法,第二步涂B有4种方法;第三步涂C有3种方法。根据分步计数原理,共有54360种方法。,、某城市在中心广场建造一个花圃,花圃分为4个部分(如左图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种.(以数字作答),A,D,B,C,E,5.如图,用45种不同颜色给图中的A、B、C、D、E四个区域涂色,规定一个区域 只涂一种颜色,相邻区域必须涂不同的颜色,不同的涂色方案有 种。,5、将种作物种植在如图所示的块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有种(以数字作答),42,四、子集问题,规律:n元集合 的不同子集有个。,例:集合A=a,b,c,d,e,它的子集个数为,真子集个数为,非空子集个数为,非空真子集个数为。,五、综合问题:,例4 若直线方程ax+by=0中的a,b可以从0,1,2,3,4这五个数字中任取两个不同的数字,则方程所表示的不同的直线共有多少条?,、75600有多少个正约数?有多少个奇约数?,解:由于 75600=2433527,75600的每个约数都可以写成的形式,其中,于是,要确定75600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5432=120个.,解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=12=2 条 第二类,m2=12=2 条 第三类,m3=12=2 条 所以,根据加法原理,从顶点A到顶点C1最近路线共有 N=2+2+2=6 条。,3.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?,4、如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有()对A.12 B.24 C.36 D.48,B,5、如图,是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻的正方形涂不同的颜色。如果颜色可反复使用,那么共有多少种涂色方法?,课后思考:,

    注意事项

    本文(《分类计数原理》PPT课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开