《充分必要条件》PPT课件.ppt
1.2.2充要条件,1.定义:,对于命题“若p则q”,知识点复习,从命题角度看,引申,若p则q是真命题,那么p是q的充分条件 q是p的必要条件.,若p则q是真命题,若q则p为假命题,那么p是q 的充分不必要条件,q是p必要不充分条件.,(四)若p则q,若q则p都是假命题,那么p是q的既不充分也不必要条件,q是p既不充分也不必要条件.,(三)若p则q,若q则p都是真命题,那么p是q的充要条件,从集合角度看(集合判定法),命题“若p则q”,引申,小为大的充分,大为小的必要,例1、以“充分不必要条件”、“必要不充分条件”、“充要条件”与”既不充分也不必要条件“中选出适当的一种填空.,(充分不必要条件),(充分不必要条件),(必要不充分条件),(必要不充分条件),(充要条件),(充要条件),(既不充分也不必要条件),B,A,D,B,例6、若p是r的充分不必要条件,r是q的必要条件,r又是s的充要条件,q是s的必要条件.则:1)s是p的什么条件?2)r是q的什么条件?,必要不充分条件,充要条件,2.充要条件的证明,注意:分清p与q.,作业:,P.12 A组 第4题 B组第2题,再见,一般以下几种情况适宜使用反证法,(1)结论本身是以否定形式出现的一类命题;,(2)有关结论是以“至多”,或“至少”的形式出现的一类命题;,(3)关于唯一性、存在性的命题;,(4)结论的反面比原结论更具体、更容易研究的命题(正难则反).,