欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《WM控制技术本》PPT课件.ppt

    • 资源ID:5454513       资源大小:1.50MB        全文页数:56页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《WM控制技术本》PPT课件.ppt

    1,第7章 PWM控制技术 7.1 PWM控制的基本原理 7.2 PWM逆变电路及其控制方法 7.3 PWM跟踪控制技术 7.4 PWM整流电路及其控制方法,2,引言,1964年,德国学者A.Schonung 和H.Stemmler 率先提出了脉宽调制(PWM:Pulse Width Modulation)的思想,把通讯技术中的调制技术应用于交流传动中,开创了DC-AC技术研究的新领域。,3,电压型(方波)逆变器可以方便地调整输出电压的频率,但输出电压的幅度在逆变环节中无法调节,通常需要增加调压环节完成调压功能,但这种方法使系统复杂,且输出电压谐波大。从傅立叶分析可知,如果把方波逆变器输出的方波用多个小方波取代,这样可以通过控制小方波的宽度控制逆变器输出基波的幅度。由于小方波的频率是逆变器输出基波频率的N倍,因此逆变器输出的最低次谐波频率升高.,4,图 方波逆变器输出的方波用N个小方波取代改变小方波脉冲宽度调节输出基波幅度,5,PWM逆变器从根本上解决了方波逆变器存在的问题。近几十年来,该技术一直是电力电子的研究热点,并在工业应用领域产生了极大的经济效益。在技术实现上,从模拟电路发展到全数字化方案;在调制原理上提出了自然采样法、规则采样法、等面积算法、消除有限次谐波的优化调制方法等等。,为了适应交流异步电机变频调速的应用,提出了电压正弦波调制、磁通正弦波调制和电流正弦波调制算法。为了获得优良的输出波形,提出了消除有限次谐波的算法、效率最优的和转矩脉动最小的PWM算法。为了消除音频噪声、消除低次谐波以及提高系统稳定性,又提出了各种随机PWM技术。到目前为止,对这一技术仍不断有新方案提出,充分体现出其强大的生命力。,6,7,PWM(Pulse Width Modulation)控制就是 脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。PWM波形可能是等幅的,也可能是不等幅的。由直流电源产生的PWM波通常是等幅的,如逆变电路和直流斩波电路。当输入是交流电源时,产生的PWM波是不等幅的,如交流斩波调压电路、矩阵式交交变频电路等。不管是等幅还是不等幅,都是基于面积等效原理来进行控制的。,8,7.1 PWM控制的基本原理,1)PWM波形,9,7.1 PWM控制的基本原理,2)重要理论基础面积等效原理,PWM控制技术的重要理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同(环节的输出响应波形基本相同)。,10,b),具体的实例说明“面积等效原理”,a),e(t)电压窄脉冲,是电路的输入。i(t)输出电流,是电路的响应。,11/60,7.1 PWM控制的基本原理,用PWM波代替正弦半波 将正弦半波看成是由N个彼此相连的脉冲宽度为/N,但幅值顶部是曲线且大小按正弦规律变化的脉冲序列组成的。把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,这就是PWM波形。对于正弦波的负半周,也可以用同样的方法得到PWM波形。,图7-3 用PWM波代替正弦半波,脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM(Sinusoidal PWM)波形。PWM波形可分为等幅PWM波和不等幅PWM波两种,由直流电源产生的PWM波通常是等幅PWM波。基于等效面积原理,PWM波形还可以等效成其他所需要的波形,如等效所需要的非正弦交流波形等。,12,13,对于正弦波的负半周,采取同样的方法,得到PWM波形,因此正弦波一个完整周期的等效PWM波为:,根据面积等效原理,正弦波还可等效为下图中的PWM波,而且这种方式在实际应用中更为广泛。,14,电压源型逆变器调制出来的是PWM电压波。电流源型逆变器调制出来的是PWM电流波。,15,7.2 PWM逆变电路及其控制方法,7.2.1 计算法和调制法 7.2.2 异步调制和同步调制 7.2.3 规则采样法 7.2.4 PWM逆变电路的谐波分析 7.2.5 提高直流电压利用率 和减少开关次数 7.2.6 空间矢量SVPWM控制 7.2.7 PWM逆变电路的多重化,16,目前中小功率的逆变电路几乎都采用PWM技术。逆变电路是PWM控制技术最为重要的应用场合。本节内容构成了本章的主体。PWM逆变电路也可分为电压型和电流型两种,目前实用的PWM逆变电路几乎都是电压型电路。,17,计算法和调制法,工作时V1和V2通断互补,V3和V4通断也互补。以uo正半周为例,V1通,V2断,V3和V4交替通断。负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。负载电流为正的区间,V1和V4导通时,uo等于Ud。,调制法 把希望输出的波形作为调制信号,把接受调制的信号作为载波,通过信号波的调制得到所期望的PWM波形。通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用最多。,图74 单相桥式PWM逆变电路,(1)电路工作原理,18,计算法和调制法,图74 单相桥式PWM逆变电路,V4关断时,负载电流通过V1和VD3续流,uo=0负载电流为负的区间,V1和V4仍导通,io为负,实际上io从VD1和VD4流过,仍有uo=Ud。V4关断V3开通后,io从V3和VD1续流,uo=0。uo总可得到Ud和零两种电平。uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平。,19,计算法和调制法,(2)调制原理,ur正半周,V1保持通,V2保持断。当uruc时使V4通,V3断,uo=Ud。当uruc时使V4断,V3通,uo=0。这样就在负载端得到了SPWM波形u0。ur负半周,分析方法 与正半周同。上述PWM波只在单个极性范围内变化称单极性PWM控制方式。,设调制信号ur为正弦波;载波信号uc为三角波。利用ur和uc的交点时刻控制IGBT的通断。,20,计算法和调制法,3)双极性PWM控制方式(单相桥逆变),在ur的半个周期内,三角波载波不再是单极性,而是有正有负,所得PWM波也有正有负,其幅值只有Ud两种电平。ur正负半周,对各开关器件的控制规律相同。,当ur uc时,给V1和V4导通信号,给V2和V3关断信号。如io0,V1和V4通,如io0,VD2和VD3通,uo=-Ud。,图7-6 双极性PWM控制方式波形,和单极性PWM控制方式对应,也是在ur和uc的交点时刻控制IGBT的通断。,21,计算法和调制法,对照上述两图可以看出,单相桥式电路既可采取单极性调制,也可采用双极性调制,由于对开关器件通断控制的规律不同,它们的输出波形也有较大的差别。,22,计算法和调制法,4)双极性PWM控制方式(三相桥逆变),图7-7 三相桥式PWM型逆变电路,23,7.2.1 计算法和调制法,图7-7 三相桥式PWM型逆变电路,图7-8 三相桥式PWM逆变电路波形,三相桥式PWM逆变电路(调制法)采用双极性控制方式。U、V和W三相的PWM控制通常公用一个三角波载波uc,三相的调制信号urU、urV和urW依次相差120。,24,7.2.1 计算法和调制法,电路工作过程(U相为例)当urUuc时,上桥臂V1导通,下桥臂V4关断,则U相相对于直流电源假想中点N的输出电压uUN=Ud/2。当urUuc时,V4导通,V1关断,则uUN=-Ud/2。V1和V4的驱动信号始终是互补的。当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是二极管VD1(VD4)续流导通,这要由阻感负载中电流的方向来决定。uUN、uVN和uWN的PWM波形都只有Ud/2两种电平。,图7-7 三相桥式PWM型逆变电路,图7-8 三相桥式PWM逆变电路波形,25,7.2.1 计算法和调制法,图7-7 三相桥式PWM型逆变电路,图7-8 三相桥式PWM逆变电路波形,输出线电压PWM波由Ud和0三种电平构成。当臂1和6导通时,uUV=Ud。当臂3和4导通时,uUV=Ud。当臂1和3或臂4和6导通时,uUV=0。负载相电压uUN可由下式求得,负载相电压的PWM波由(2/3)Ud、(1/3)Ud和0共5种电平组成。,为了防止上下两个臂直通而造成短路,在上下两臂通断切换时要留一小段上下臂都施加关断信号的死区时间。,26,7.2.2 异步调制和同步调制,根据载波和信号波是否同步及载波比的变化情况,PWM调制方式分为异步调制和同步调制。,通常保持fc固定不变,当fr变化时,载波比N是变化的在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称。当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小。当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大。,27,7.2.2 异步调制和同步调制,2)同步调制,载波信号和调制信号保持同步的调制方式,当变频时使载波与信号波保持同步,即N等于常数。,基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定。三相电路中公用一个三角波载波,且取N为3的整数倍,使三相输出对称。为使一相的PWM波正负半周镜对称,N应取奇数。fr很低时,fc也很低,由调制带来的谐波不易滤除。fr很高时,fc会过高,使开关器件难以承受。,28,7.3 PWM跟踪控制技术,PWM波形生成的第三种方法跟踪控制方法。把希望输出的波形作为指令信号,把实际波形作为 反馈信号,通过两者的瞬时值比较来决定逆变电路 各开关器件的通断,使实际的输出跟踪指令信号 变化。常用的有滞环比较方式和三角波比较方式。,29,7.3 PWM跟踪控制技术,7.3.1 滞环比较方式 7.3.2 三角形比较方式,30,7.3.1 滞环比较方式,1)采用滞环比较方式的PWM电路跟踪控制。,图7-22 滞环比较方式电流跟踪控制举例,基本原理把指令电流i*和实际输出电流i的偏差i*-i作为滞环比较器的输入。V1(或VD1)通时,i增大V2(或VD2)通时,i减小通过环宽为2DI的滞环比较器的控制,i就在i*+DI和i*-DI的范围内,呈锯齿状地跟踪指令电流i*。,31,7.3.1 滞环比较方式,2)三相的情况,图7-25 三相电流跟踪型PWM逆变电路输出波形,图7-24 三相电流跟踪型PWM逆变电路,32,7.3.1 滞环比较方式,3)采用滞环比较方式的电流跟踪型PWM变流电路有如下特点。,(1)硬件电路简单。(2)实时控制,电流响应快。(3)不用载波,输出电压波形中不含特定频率的谐波。(4)和计算法及调制法相比,相同开关频率时输出电流 中高次谐波含量多。(5)属于闭环控制,是各种跟踪型PWM变流电路的共同特点。,33,7.3.1 滞环比较方式,4)采用滞环比较方式实现电压跟踪控制把指令电压u*和输出电压u进行比较,滤除偏差信号中的谐波,滤波器的输出送入滞环比较器,由比较器输出控制开关器件的通断,从而实现电压跟踪控制。,图7-26 电压跟踪控制电路举例,34,7.3.1 滞环比较方式,和电流跟踪控制电路相比,只是把指令和反馈信号从电流变为电压。输出电压PWM波形中含大量高次谐波,必须用适当的滤波器滤除。u*=0时,输出电压u为频率较高的矩形波,相当于一个自励振荡电路。u*为直流信号时,u产生直流偏移,变为正负脉冲宽度不等,正宽负窄或正窄负宽的矩形波。u*为交流信号时,只要其频率远低于上述自励振荡频率,从u中滤除由器件通断产生的高次谐波后,所得的波形就几乎和u*相同,从而实现电压跟踪控制。,35,7.4 PWM整流电路及其控制方法,7.4.1 PWM整流电路的工作原理 7.4.2 PWM整流电路的控制方法,PWM控制整流电路属于斩控式整流电路,与相控整流电路不同在于,它使用全控型器件和脉宽控制方式。理想的整流电路除能实现交流-直流变换外,还要求输出直流脉动小、网侧功率因数高、输出响应快,电能可以双向传输等。一般相控式整流电路很难完全满足,PWM控制整流电路可以较好地实现这些要求。,PWM整流电路的组成,在整流电路中以全控器件取代晶闸管,器件采用脉冲控制方式。根据电路分析可知:整流电路交流侧输入电流和直流侧输出电压、电流都是脉动不连续的,含有谐波成分,直流侧输出电压的脉动可以用电容滤波;为了减小交流侧的电流脉动,在交流侧串接电感滤波,交流侧串接电感后,须在4个开关器件上反并联二极管,以便在IGBT关断时能有感性电流的通路,使电感储能有释放的回路,减小电感电流突变产生的di/dt。,38,7.4.1 PWM整流电路的工作原理,PWM整流电路也可分为电压型和电流型两大类,目前电压型的较多。,c,39,7.4.1 PWM整流电路的工作原理,(1)单相全桥PWM整流电路的工作原理,c,40,7.4.1 PWM整流电路的工作原理,图7-29 PWM整流电路的运行方式向量图,41,7.4.1 PWM整流电路的工作原理,a:滞后 相角d,和 同相,整流状态,功率因数为1。PWM整流电路最基本的工作状态。,b:超前 相角d,和 反相,逆变状态,说明PWM整流电路可实现能量正反两个方向的流动,这一特点对于需再生制动的交流电动机调速系统很重要。,42,7.4.1 PWM整流电路的工作原理,c:滞后 相角d,超前 90,电路向交流电源送出无功功率,这时称为静止无功功率发生器(Static Var GeneratorSVG)。,d:通过对 幅值和相位的控制,可以使 比 超前或滞后任一角度j。,43,7.4.1 PWM整流电路的工作原理,(2)单相全桥PWM整流电路工作原理,整流状态下:,us 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。,us 0时,(V1、VD3、VD2、Ls)和(V4、VD2、VD3、Ls)分别组成两个升压斩波电路。,电压型PWM整流电路是升压整流电路,输出直流电压可从交流电源电压峰值附近向高调节,不宜向低调节。,44,整流运行,单相PWM整流电路整流状态时的等效电路,45,逆变运行,单相PWM整流电路逆变状态时的等效电路,46,7.4.1 PWM整流电路的工作原理,2三相PWM整流电路,47,7.4.2 PWM整流电路的控制方法,有多种控制方法,根据有没有引入电流反馈可分为两种 间接电流控制、直接电流控制。,48,7.4.2 PWM整流电路的控制方法,从整流运行向逆变运行转换首先负载电流反向而向C充电,ud抬高,PI调节器出现负偏差,id减小后变为负值,使交流输入电流相位和电压相位反相,实现逆变运行。稳态时,ud和 仍然相等,PI调节器输入恢复到零,id为负值,并与逆变电流的大小对应。,控制原理,结合图731进行说明。,49,7.4.2 PWM整流电路的控制方法,控制系统中其余部分的工作原理图中上面的乘法器是id分别乘以和a、b、c三相相电压同相位的正弦信号,再乘以电阻R,得到各相电流在Rs上的压降uRa、uRb和uRc。图中下面的乘法器是id分别乘以比a、b、c三相相电压相位超前/2的余弦信号,再乘以电感L的感抗,得到各相电流在电感Ls上的压降uLa、uLb和uLc。各相电源相电压ua、ub、uc分别减去前面求得的输入电流在电阻R和电感L上的压降,就可得到所需要的交流输入端各相的相电压uA、uB和uC的信号,用该信号对三角波载波进行调制,得到PWM开关信号去控制整流桥,就可以得到需要的控制效果。,存在的问题在信号运算过程中用到电路参数Ls和Rs,当Ls和Rs的运算值和实际值有误差时,会影响到控制效果。是基于系统的静态模型设计的,其动态特性较差。间接电流控制的系统应用较少。,50,7.4.2 PWM整流电路的控制方法,2)直接电流控制,51,7.4.2 PWM整流电路的控制方法,控制系统组成双闭环控制系统,外环是直流电压控制环,内环是交流电流控制环。外环的结构、工作原理和图7-31间接电流控制系统相同。外环PI调节器的输出为id,id分别乘以和a、b、c三相相电压同相位的正弦信号,得到三相交流电流的正弦指令信号,和。,和 分别和各自的电源电压同相位,其幅值和反映负载电流大小的直流信号id成正比。指令信号和实际交流电流信号比较后,通过滞环对器件进行控制,从而使实际交流输入电流跟踪指令值。,52,7.4.2 PWM整流电路的控制方法,图7-32 直接电流控制系统结构图,优点控制系统结构简单,电流响应速度快,系统鲁棒性好。,获得了较多的应用,53,PWM控制技术的地位,PWM控制技术的地位 PWM控制技术是在电力电子领域有着广泛的应用,并对电力电子技术产生了十分深远影响的一项技术。PWM技术与器件的关系 IGBT、电力MOSFET等为代表的全控型器件的不断完善给PWM控制技术提供了强大的物质基础。PWM控制技术用于直流斩波电路 直流斩波电路实际上就是直流PWM电路,是PWM控制技术应用较早也成熟较早的一类电路,应用于直流电动机调速系统就构成广泛应用的直流脉宽调速系统。PWM控制技术用于交流交流变流电路 斩控式交流调压电路和矩阵式变频电路是PWM控制技术在这类电路中应用的代表。目前其应用都还不多,但矩阵式变频电路因其容易实现集成化,可望有良好的发展前景。,54,第7章 PWM控制技术 小结,PWM控制技术用于逆变电路PWM控制技术在逆变电路中的应用最具代表性。正是由于在逆变电路中广泛而成功的应用,才奠定了PWM控制技术在电力电子技术中的突出地位。除功率很大的逆变装置外,不用PWM控制的逆变电路已十分少见。第4章因尚未涉及到PWM控制技术,因此对逆变电路的介绍是不完整的。学完本章才能对逆变电路有较完整的认识。,55,第7章 PWM控制技术 小结,PWM控制技术用于整流电路PWM控制技术用于整流电路即构成PWM整流电路。可看成逆变电路中的PWM技术向整流电路的延伸。PWM整流电路已获得了一些应用,并有良好的应用前景。PWM整流电路作为对第3章的补充,可使我们对整流电路有更全面的认识。,56,第7章 PWM控制技术 小结,PWM控制技术与相位控制技术以第3章相控整流电路和第6章交流调压电路为代表的相位控制技术至今在电力电子电路中仍占据着重要地位。以PWM控制技术为代表的斩波控制技术正在越来越占据着主导地位。相位控制和斩波控制分别简称相控和斩控。把两种技术对照学习,对电力电子电路的控制技术会有更明晰的认识。,

    注意事项

    本文(《WM控制技术本》PPT课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开