欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《PWM控制技术》PPT课件.ppt

    • 资源ID:5453253       资源大小:2.45MB        全文页数:69页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《PWM控制技术》PPT课件.ppt

    电力电子技术,第7章 PWM控制技术,引言,PWM(Pulse Width Modulation)PWM控制脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位本章主要以逆变电路为控制对象来介绍PWM控制技术也介绍PWM整流电路,7.1 PWM控制的基本原理,理论基础冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同冲量指窄脉冲的面积效果基本相同,是指环节的输出响应波形基本相同低频段非常接近,仅在高频段略有差异,图7-1 形状不同而冲量相同的各种窄脉冲,7.1 PWM控制的基本原理,一个实例 图7-2a的电路电路输入:u(t),窄脉冲,如图7-1a、b、c、d所示电路输出:i(t),图7-2b面积等效原理,图7-2 冲量相同的各种窄脉冲的响应波形,7.1 PWM控制的基本原理,用一系列等幅不等宽的脉冲来代替一个正弦半波正弦半波N等分,可看成N个彼此相连的脉冲序列,宽度相等,但幅值不等用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等宽度按正弦规律变化,图7-3 用PWM波代替正弦半波,SPWM波形脉冲宽度按正弦规律变化而和正弦波等效的PWM波形要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可,7.1 PWM控制的基本原理,等幅PWM波和不等幅PWM波由直流电源产生的PWM波通常是等幅PWM波输入电源是交流,得到不等幅PWM波基于面积等效原理进行控制,本质是相同的,7.1 PWM控制的基本原理,PWM电流波电流型逆变电路进行PWM控制,得到的就是PWM电流波PWM波形可等效的各种波形直流斩波电路:等效直流波形SPWM波:等效正弦波形还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理,7.2 PWM逆变电路及其控制方法,目前中小功率的逆变电路几乎都采用PWM技术逆变电路是PWM控制技术最为重要的应用场合本节内容构成了本章的主体PWM逆变电路也可分为电压型和电流型两种,目前实用的PWM逆变电路几乎都是电压型电路,7.2.1 计算法和调制法,计算法根据正弦波频率、幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化调制法输出波形作调制信号,进行调制得到期望的PWM波通常采用等腰三角波或锯齿波作为载波等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称,7.2.1 计算法和调制法,与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求调制信号波为正弦波时,得到的就是SPWM波调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波,7.2.1 计算法和调制法,单极性PWM控制方式(单相桥逆变)在ur和uc的交点时刻控制IGBT的通断ur正半周,V1保持通,V2保持断当uruc时使V4通,V3断,uo=Ud当uruc时使V3断,V4通,uo=0虚线uof表示uo的基波分量,图7-5 单极性PWM控制方式波形,7.2.1 计算法和调制法,双极性PWM控制方式(单相桥逆变)在ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负在ur一周期内,输出PWM波只有Ud两种电平仍在调制信号ur和载波信号uc的交点控制器件的通断ur正负半周,对各开关器件的控制规律相同当ur uc时,给V1和V4导通信号,给V2和V3关断信号如io0,V1和V4通,如io0,VD1和VD4通,uo=Ud,图7-6 双极性PWM控制方式波形,7.2.1 计算法和调制法,当ur0,VD2和VD3通,uo=-Ud单相桥式电路既可采取单极性调制,也可采用双极性调制,图7-6 双极性PWM控制方式波形,7.2.1 计算法和调制法,双极性PWM控制方式(单相桥逆变)三相的PWM控制公用三角波载波uc三相的调制信号urU、urV和urW依次相差120,图7-7 三相桥式PWM型逆变电路,7.2.1 计算法和调制法,防直通死区时间同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间死区时间的长短主要由开关器件的关断时间决定死区时间会给输出的PWM波带来影响,使其稍稍偏离正弦波,图7-8 三相桥式PWM逆变电路波形,7.2.2 异步调制和同步调制,载波比载波频率fc与调制信号频率fr之比,N=fc/fr根据载波和信号波是否同步及载波比的变化情况,PWM调制方式分为异步调制和同步调制1.异步调制异步调制载波信号和调制信号不同步的调制方式通常保持fc固定不变,当fr变化时,载波比N是变化的在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称产生的不利影响都较小当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大,7.2.2 异步调制和同步调制,2.同步调制同步调制N等于常数,并在变频时使载波和信号波保持同步基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定三相电路中公用一个三角波载波,且取N为3的整数倍,使三相输出对称为使一相的PWM波正负半周镜对称,N应取奇数fr很低时,fc也很低,由调制带来的谐波不易滤除fr很高时,fc会过高,使开关器件难以承受,图7-10 同步调制三相PWM波形,7.2.3 规则采样法,按SPWM基本原理,自然采样法要求解复杂的超越方程,难以在实时控制中在线计算,工程应用不多规则采样法特点工程实用方法,效果接近自然采样法,计算量小得多,图7-12 规则采样法,7.2.3 规则采样法,规则采样法原理图7-12,三角波两个正峰值之间为一个采样周期Tc自然采样法中,脉冲中点不和三角波一周期的中点(即负峰点)重合规则采样法使两者重合,每个脉冲的中点都以相应的三角波中点为对称,使计算大为简化在三角波的负峰时刻tD对正弦信号波采样得D点,过D作水平直线和三角波分别交于A、B点,在A点时刻tA和B点时刻tB控制开关器件的通断脉冲宽度d 和用自然采样法得到的脉冲宽度非常接近,规则采样法,规则采样法计算公式推导 正弦调制信号波 式中,a称为调制度,0a1;wr为信号波角频率。从图6-12得 因此可得 三角波一周期内,脉冲宽度,(7-6),规则采样法,三相桥逆变电路的情况三角波载波公用,三相正弦调制波相位依次差120同一三角波周期内三相的脉宽分别为dU、dV和dW。,7.2.4 PWM逆变电路的谐波分析,使用载波对正弦信号波调制,产生了和载波有关的谐波分量谐波频率和幅值是衡量PWM逆变电路性能的重要指标之一分析双极性SPWM波形同步调制可看成异步调制的特殊情况,只分析异步调制方式分析方法不同信号波周期的PWM波不同,无法直接以信号波周期为基准分析以载波周期为基础,再利用贝塞尔函数推导出PWM波的傅里叶级数表达式分析过程相当复杂,结论却简单而直观,7.2.4 PWM逆变电路的谐波分析,单相的分析结果图7-13,不同a时单相桥式PWM逆变电路输出电压频谱图谐波角频率为(6-10)式中,n=1,3,5,时,k=0,2,4,;n=2,4,6,时,k=1,3,5,PWM波中不含低次谐波,只含wc及其附近的谐波以及 2wc、3wc等及其附近的谐波,图7-13 单相PWM桥式逆变电路输出电压频谱图,7.2.4 PWM逆变电路的谐波分析,三相的分析结果公用载波信号时的情况输出线电压中的谐波角频率为 式中,n=1,3,5,时,k=3(2m1)1,m=1,2,;n=2,4,6,时,图6-14,输出线电压频谱图,图7-14 三相桥式PWM逆变电路输出线电压频谱图,(6-11),7.2.6 PWM逆变电路的多重化,PWM多重化逆变电路,一般目的:提高等效开关频率、减少开关损耗、减少和载波有关的谐波分量PWM逆变电路多重化联结方式有变压器方式和电抗器方式利用电抗器联接的二重PWM逆变电路(图7-20,图 7-21))两个单元的载波信号错开180输出端相对于直流电源中点N的电压uUN=(uU1N+uU2N)/2,已变为单极性PWM波,图7-20 二重PWM型逆变电路,7.4 PWM整流电路及其控制方法,实用的整流电路几乎都是晶闸管整流或二极管整流晶闸管相控整流电路:输入电流滞后于电压,且其中谐波分量大,因此功率因数很低二极管整流电路:虽位移因数接近1,但输入电流中谐波分量很大,所以功率因数也很低把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路控制PWM整流电路,使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器。,7.4.1 PWM整流电路的工作原理,PWM整流电路也可分为电压型和电流型两大类,目前电压型的较多1单相PWM整流电路图7-28a和b分别为单相半桥和全桥PWM整流电路半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接全桥电路直流侧电容只要一个就可以交流侧电感Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的,图7-28 单相PWM整流电路,a)单相半桥电路,b)单相全桥电路,7.4.1 PWM整流电路的工作原理,单相全桥PWM整流电路的工作原理正弦信号波和三角波相比较的方法对图7-28b中的V1V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波uAB。uAB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。由于Ls的滤波作用,谐波电压只使is产生很小的脉动当正弦信号波频率和电源频率相同时,is也为与电源频率相同的正弦波。us一定时,is幅值和相位仅由uAB中基波uABf的幅值及其与us的相位差决定。改变uABf的幅值和相位,可使is和us同相或反相,is比us超前90,或使is与us相位差为所需角度。,7.4.1 PWM整流电路的工作原理,相量图(图7-29)a:滞后 相角d,和 同相,整流状态,功率因数为1。PWM整流电路最基本的工作状态b:超前 相角d,和 反相,逆变状态,说明PWM整流电路可实现能量正反两个方向的流动,这一特点对于需再生制动的交流电动机调速系统很重要c:滞后 相角d,超前 90,电路向交流电源送出无功功率,这时称为静止无功功率发生器(Static Var GeneratorSVG)d:通过对 幅值和相位的控制,可以使 比 超前或滞后任一角度j,7.4.1 PWM整流电路的工作原理,对单相全桥PWM整流电路工作原理的进一步说明 整流状态下us 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例V2通时,us通过V2、VD4向Ls储能V2关断时,Ls中的储能通过VD1、VD4向C充电,7.4.1 PWM整流电路的工作原理,us 0时,(V1、VD3、VD2、Ls)和(V4、VD2、VD3、Ls)分别组成两个升压斩波电路由于是按升压斩波电路工作,如控制不当,直流侧电容电压可能比交流电压峰值高出许多倍,对器件形成威胁另一方面,如直流侧电压过低,例如低于us的峰值,则uAB中就得不到图7-29a中所需的足够高的基波电压幅值,或uAB中含有较大的低次谐波,这样就不能按需要控制is,is波形会畸变可见,电压型PWM整流电路是升压型整流电路,其输出直流电压可从交流电源电压峰值附近向高调节,如要向低调节就会使性能恶化,以至不能工作,7.4.1 PWM整流电路的工作原理,2三相PWM整流电路图7-30,三相桥式PWM整流电路,最基本的PWM整流电路之一,应用最广。工作原理和前述的单相全桥电路相似,只是从单相扩展到三相。进行SPWM控制,在交流输入端A、B和C可得SPWM电压,按图7-29a的相量图控制,可使ia、ib、ic为正弦波且和电压同相且功率因数近似为1。和单相相同,该电路也可工作在逆变运行状态及图c或d的状态。,图7-30 三相桥式PWM整流电路,本章小结,PWM控制技术的地位PWM控制技术是在电力电子领域有着广泛的应用,并对电力电子技术产生了十分深远影响的一项技术器件与PWM技术的关系IGBT、电力MOSFET等为代表的全控型器件的不断完善给PWM控制技术提供了强大的物质基础PWM控制技术用于直流斩波电路直流斩波电路实际上就是直流PWM电路,是PWM控制技术应用较早也成熟较早的一类电路,应用于直流电动机调速系统就构成广泛应用的直流脉宽调速系统,本章小结,PWM控制技术用于逆变电路PWM控制技术在逆变电路中的应用最具代表性正是由于在逆变电路中广泛而成功的应用,才奠定了PWM控制技术在电力电子技术中的突出地位除功率很大的逆变装置外,不用PWM控制的逆变电路已十分少见第4章因尚未涉及到PWM控制技术,因此对逆变电路的介绍是不完整的。学完本章才能对逆变电路有较完整的认识,本章小结,PWM控制技术用于整流电路PWM控制技术用于整流电路即构成PWM整流电路可看成逆变电路中的PWM技术向整流电路的延伸PWM整流电路已获得了一些应用,并有良好的应用前景PWM整流电路作为对第3章的补充,可使我们对整流电路有更全面的认识,本章小结,PWM控制技术与相位控制技术以第3章相控整流电路和第6章交流调压电路为代表的相位控制技术至今在电力电子电路中仍占据着重要地位以PWM控制技术为代表的斩波控制技术正在越来越占据着主导地位相位控制和斩波控制分别简称相控和斩控把两种技术对照学习,对电力电子电路的控制技术会有更明晰的认识,本章内容结束!,图7-1 形状不同而冲量相同的各种窄脉冲,返回,图7-2 冲量相同的各种窄脉冲的响应波形,返回,图7-3 用PWM波代替正弦半波,返回,图7-4 单相桥式PWM逆变电路,返回,图7-5 单极性PWM控制方式波形,返回,图7-6 双极性PWM控制方式波形,返回,图7-7 三相桥式PWM型逆变电路,返回,图7-8 三相桥式PWM逆变电路波形,返回,图7-9 特定谐波消去法的输出PWM波形,返回,图7-10 同步调制三相PWM波形,返回,图7-11 分段同步调制方式举例,返回,图7-12 规则采样法,返回,图7-13 单相PWM桥式逆变电路输出电压频谱图,返回,图7-14 三相桥式PWM逆变电路 输出线电压频谱图,返回,图7-15 梯形波为调制信号的PWM控制,返回,图7-16 s 变化时的d 和直流电压利用率,返回,图7-17 s 变化时的各次谐波含量,返回,图7-18 叠加3次谐波的调制信号,返回,图7-19 线电压控制方式举例,返回,图7-20 二重PWM型逆变电路,返回,图7-21 二重PWM型逆变电路输出波形,返回,图7-22 滞环比较方式电流跟踪控制举例,返回,图7-23 滞环比较方式的指令电流和输出电流,返回,图7-24 三相电流跟踪型PWM逆变电路,返回,图7-25 三相电流跟踪型PWM逆变电路输出波形,返回,图7-26 电压跟踪控制电路举例,返回,图7-27 三角波比较方式电流跟踪型逆变电路,返回,图7-28 单相PWM整流电路,单相半桥电路,单相全桥电路,返回,图7-29 PWM整流电路的运行方式相量图,整流运行,逆变运行,无功补偿运行,Is超前角为j,返回,图7-30 三相桥式PWM整流电路,返回,图7-31 间接电流控制系统结构,返回,图7-32 直接电流控制系统结构图,返回,

    注意事项

    本文(《PWM控制技术》PPT课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开