欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    清华大学电路原理课件4.ppt

    • 资源ID:5443997       资源大小:1.25MB        全文页数:55页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    清华大学电路原理课件4.ppt

    第4章 电路的若干定理,4.1 叠加定理,4.2 替代定理,4.3 戴维南定理和诺顿定理,4.4 特勒根定理,4.5 互易定理,4.6 对偶电路与对偶原理,本章重点,本章重点,熟练掌握叠加定理、戴维南和诺顿定理,了解对偶原理,掌握替代定理、特勒根定理和互易定理,返回目录,叠加定理,在线性电路中,任一支路电流(或电压)都是电路 中各个独立电源单独作用时,在该支路产生的电流(或 电压)的代数和。,4.1 叠加定理(Superposition Theorem),如图电路,计算各支路电流。,用回路法,(R1+R2)ia-R2ib=uS1-uS2-R2ia+(R2+R3)ib=uS2-uS3,R11ia+R12ib=uS11 R21ia+R22ib=uS22,其中,R11=R1+R2,R12=-R2,uS11=uS1-uS2 R21=-R2,R22=R2+R3,uS22=uS2-uS3,其中,用行列式法解,由上式可见,各支路电流均为各电压源电压的一次函数,所以各支路电流(如i1)可看成各电压源单独作用时产生的电流(如i1,i1,i1)之和。,则各支路电流为,三个电源共同作用,=,=,us1单独作用,us2单独作用,us3单独作用,+,当一个电源单独作用时,其余电源不作用,不作用的电源就意味着取零值。即对电压源看作短路,而对电流源看作开路。,+,+,+,因此,上述以一个具体例子来说明叠加的概念,这个方法也 可推广到一般的多电源的电路中去。,同样可以证明:线性电阻电路中任意支路的电压 等于各电源在此支路产生的电压的代数和。,电源既可是电压源,也可是电流源。,解,(1)10V电压源单独作用,4A电流源开路,u=4V,(2)4A电流源单独作用,10V电压源短路,u=-42.4=-9.6V,共同作用 u=u+u=4+(-9.6)=-5.6V,例2,求图示电路中电压US。,(1)10V电压源单独作用,(2)4A电流源单独作用,解,US=-10 I1+U1,US=-10I1+U1,US=-10 I1+U1=-10 I1+4I1=-101+41=-6V,US=-10I1+U1=-10(-1.6)+9.6=25.6V,共同作用:,US=US+US=-6+25.6=19.6V,小结,1.叠加定理只适用于线性电路。,2.一个电源作用,其余电源为零,电压源为零短路。,电流源为零开路。,3.功率不能叠加(功率为电压或电流的二次函数)。,4.叠加时要注意各分量的方向。,5.含受控源(线性)电路亦可用叠加,但叠加只 适用于独立源,受控源应始终保留。,齐性原理(homogeneity property),线性电路中,所有激励(独立源)都增大(或减小)同样的比例,则电路中响应(电压或电流)也增大(或减 小)同样的比例。,当电路中只有一个激励时,则响应与激励成正比。,例,解,采用倒推法:设 i=1A。,则,求电流 i。,已知图中RL=2 R1=1 R2=1 us=51V,返回目录,4.2 替代定理(Substitution Theorem),任意一个线性电路,其中第k条支路电压为uk、电流为ik,那么这条支路就可以用一个电压等于uk的独立电压源,或者用一个电流等于ik的独立电流源来替代,替代后电路中电压和电流均保持原有值。,定理内容,证明:,替代前后KCL、KVL关系相同,其余支路的u,i关系不变。,用ik替代后,其余支路电流不变(KCL),其余支路电压不变,故第k条支路uk也不变(KVL)。,用uk替代后,其余支路电压不变(KVL),其余支路电流也不变,故第k条支路ik也不变(KCL)。,又证:,证毕!,注意:,1.替代定理既适用于线性电路,也适用于非线性电路。,4.未被替代支路的相互连接及参数不能改变。,例,2.替代后电路必须有唯一解。,3.被替代的支路与电路其它部分应无耦合关系。,解,用替代,U=U+U=(0.8-0.6)Ix=0.2Ix,Rx=U/Ix=0.2Ix/Ix=0.2,(或U=(0.1-0.075)I=0.025I,=,+,),用叠加,返回目录,1.几个名词,(1)端口(port),端口指电路引出的一对端钮,其中 从一个端钮(如a)流入的电流一定等 于从另一端钮(如b)流出的电流。,(2)一端口网络(network),网络与外部电路只有一对端钮(或一个端口)联接。,4.3 戴维南定理和诺顿定理(Thevenin-Norton Theorem),2.戴维南定理,任何一个线性含有独立电源、线性电阻和线性受控 源的一端口,对外电路来说,可以用一个电压源(Uoc)和电阻(Ri)的串联组合来等效替代;此电压源的电压等于 外电路断开时端口处的开路电压,而电阻等于一端口中 全部独立电源置零后的端口等效电阻。,证明:,(对a),利用替代定理,将外部电路用电流源替代,此时u、i值不变。计算 u 值。(用叠加定理),=,+,根据叠加定理,可得,电流源i为零,网络A中独立源全部置零,u=Uoc(外电路开路时a、b间开路电压),u=-Ri i,则,u=u+u=Uoc-Ri i,此关系式恰与图(b)电路相同。,小结:,(1)戴维南等效电路中电压源电压等于将外电路断开时端口处的开路电压Uoc,电压源方向与所求开路电压方向相同。,(2)串联电阻为将一端口内部独立电源全部置零(电压 源短路,电流源开路)后,所得一端口网络的等效电阻。,等效电阻的计算方法:,a.当网络内部不含有受控源时可采用电阻串并联的方法 计算;,b.端口加电压求电流法或加电流求电压法(内部独立电 源置零)。,c.等效电阻等于端口的开路电压与短路电流的比(内部 独立电源保留)。,(3)当一端口内部含有受控源时,控制支路与受控源 支路必须包含在被化简的同一部分电路中。,解,保留Rx支路,将其余一端口化为戴维南等效电路:,(1)求开路电压,Uoc=U1+U2=-104/(4+6)+10 6/(4+6)=-4+6=2V,(2)求等效电阻Ri,Ri=4/6+6/4=4.8,(3)Rx=1.2时,,I=Uoc/(Ri+Rx)=0.333A,Rx=5.2时,,I=Uoc/(Ri+Rx)=0.2A,Rx=Ri=4.8时,其上获最大功率。,含受控源电路戴维南定理的应用,电路如图所示。求电压UR。,例2,解,(1)求开路电压Uoc。,Uoc=6I+3I,I=9/9=1A,Uoc=9V,(2)求等效电阻Ri,方法1 端口加压求流(内部独立电压源短路),U0=6I+3I=9I,I=I06/(6+3)=(2/3)I0,U0=9(2/3)I0=6I0,Ri=U0/I0=6,方法2 开路电压、短路电流,(Uoc=9V),6 I1+3I=9,I=-6I/3=-2I,I=0,Isc=I1=9/6=1.5A,Ri=Uoc/Isc=9/1.5=6,(3)等效电路,下图电路经戴维南等效变换后将难于继续进行计算。,控制量呢?,任何一个含独立电源,线性电阻和线性受控源的一端 口,对外电路来说,可以用一个电流源和电阻(电导)的并联组合来等效置换;电流源的电流等于该一端口的 短路电流,而电阻(电导)等于把该一端口的全部独立 电源置零后的输入电阻(电导)。,3.诺顿定理,诺顿等效电路可由戴维南等效电路经电源等效 变换得到。但须指出,诺顿等效电路可独立进行证明。证明过程从略。,例,电路如图所示,求电流I。,(1)求端口的短路电流Isc,I1=12/2=6A,I2=(24+12)/10=3.6A,Isc=-I1-I2=-3.6-6=-9.6A,解,(2)求Ri:电压源短路,用电阻串并联。,Ri=102/(10+2)=1.67,(3)诺顿等效电路:,I=-Isc1.67/(4+1.67)=9.61.67/5.67=2.83A,解毕!,返回目录,4.4 特勒根定理(Tellegens Theorem),1.具有相同拓扑结构(特征)的电路,两个电路,支路数和节点数都相同,而且对应支路 与节点的联接关系也相同。,N,例,求,解,2.特勒根定理,注意:各支路电压、电流均取关联的参考方向,证明:,其中:,若节点接有另一支路m,同理可得:,对节点可得:,对其他节点,有同样的 结果,故:,证毕!,同理可证:,3.功率平衡定理,在任一瞬间,任一电路中的所有支路所吸收的瞬时 功率的代数和为零,即,此亦可认为特勒根定理在同一电路上的表述。,特勒根定理适用于一切集总参数电路。只要各支路 u、i满足KCL、KVL即可。,注意,将特勒根定理用于同一电路中各支路电流、电压即可证得上述关系。,US=10V,I1=5A,I2=1A,解 由特勒根定理,例1,方框内为同一网络,解,根据特勒根定理,由(1)得:U1=4V,I1=2A,U2=2V,U2/R2=1A,返回目录,4.5 互易定理(Reciprocity Theorem),第一种形式:,激励(excitation)为电压源,响应(response)为电流。,给定任一仅由线性电阻构成的网络(见下图),设支路 j中有唯一电压源uj,其在支路k中产生的电流为ikj(图a);若支路k中有唯一电压源uk,其在支路j中产生的电流为ijk(图b)。,当 uk=uj 时,ikj=ijk。,则两个支路中电压电流有如下关系:,设a-b支路为支路1,c-d支路为支路2,其余支路为3b。图(a)与图(b)有相同拓扑特征,(a)中用uk、ik表示支路电 压和电流,(b)中用 支路电压和电流(均取关联 方向)。,证明:,由特勒根定理:,即,两式相减,得,将图(a)与图(b)中支路1,2的条件代入,即,即:,证毕!,当 uk=uj 时,ikj=ijk。,第二种形式:,激励是电流源,响应是电压。,在任一线性电阻网络的一对节点 j 和 j 间接入唯一电 流源 ij,它在另一对节点 k 和 k 产生电压ukj(见图a);若改在节点 k 和 k 间接入唯一电流源 ik,它在节点 j 和 j 间产生电压 ujk(图b),则上述电压、电流有如下关系:,当 ik=jj 时,ukj=ujk。,由同学自己证明。,解,利用互易定理,可得下图,I1=I 2/(4+2)=2/3A,I2=I 2/(1+2)=4/3A,I=I1-I2=-0.667A,解毕!,(1)互易定理适用于线性网络在单一电源激励下,两个支路电压电流关系。,(2)激励为电压源时,响应为电流。激励为电流源时,响应为电压。,(3)电压源激励,互易时原电压源处短路,电压源串 入另一支路;电流源激励,互易时原电流源处开路,电流源并入另 一支路的两个节点间。,(4)互易要注意电源与电压(电流)的方向。,(5)含有受控源的网络,互易定理一般不成立。,应用互易定理时应注意:,返回目录,4.6 对偶电路与对偶原理(Dual Principle),一、对偶电路(dual circuit),例1,网孔电流方程,(R1+R2)il=uS,节点电压方程,(G1+G2)un=iS,若R1=G1,R2=G2,uS=iS,则两方程完全相同,解答 il、un 数值也相同。,例2,网孔方程,节点方程,上述每例中的两个电路称为对偶电路。,将方程(1)中所有元素用其对偶元素替换得方程(2)。,若R1=G1,R2=G2,R3=G3,uS1=iS1,rm=gm,则两 个方程组相同,其解答也相同,即un1=il1,un2=il2。,二、对偶元素(见书),三、对偶原理,只有平面电路才有对偶电路。,四、如何求一个电路的对偶电路,打点法:网孔对应节点(外网孔对应参考节点)。,注意:,两个对偶电路N,如果对电路N有命题(或陈述)S 成 立,则将S中所有元素,分别以其对应的对偶元素替换,所得 命题(或陈述)对电路 成立。,例1,例2,(2)各对偶元素进行替换。数值相同,量纲不同。,注意:,(1)每一网孔对应一节点,外网孔对应参考节点。参考方向:按惯例网孔电流取顺时针方向,节点电压方向由独 立节点指向参考节点。,(3)电源方向(在按惯例选取网孔电流和节点电压 方向的前提下),返回目录,谢谢观看!,

    注意事项

    本文(清华大学电路原理课件4.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开