欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    探索因素分析主成分分析与因素分析.ppt

    • 资源ID:5400636       资源大小:213.51KB        全文页数:23页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    探索因素分析主成分分析与因素分析.ppt

    1,探索性因素分析:主成分分析與因素分析,2,相關矩陣,Observed correlation matrix由觀察變項計算得到的相關係數矩陣Reproduced correlation matrix由因素導出的相關係數矩陣Residual correlation matrix觀察相關係數矩陣與重製相關係數矩陣的差異,3,因素分析的各類矩陣,Orthogonal rotation直交轉軸所有的因素不具有相關的轉軸結果Oblique rotation斜交轉軸因素間具有相關的轉軸結果Loading matrix因素負荷矩陣直交轉軸後各觀察變項與因素間的相關係數矩陣Structure matrix結構矩陣斜交轉軸後各觀察變項與因素間的相關係數矩陣Pattern matrix型態矩陣斜交轉軸後各觀察變項與因素間排除因素間相關後之相關係數矩陣為斜交轉軸可以反應因素意義的係數Factor score coefficients matrix因素分數係數矩陣用以反應因素得分的類迴歸方程式係數矩陣,4,因素分析的目的與問題,因素分析的主要目的在將繁多的變項縮減為少數的因素,找出變項背後的結構,涉及下列問題的探討因素數目的決定因素的內容與性質因素的重要性理論的檢驗因素分數的估計,5,因素分析的限制,理論層次的問題因素的抽取必須具有相當的理論與邏輯基礎。重要的因素必須被涵蓋,無關的測量應該被排除因素背後應有特定且穩定的測量變項,稱為marker variable,是用來定義因素的重要變項因素內的複雜性需被仔細的評估。反應在與多個因素有關係的觀察變項樣本的選取需能涵蓋測量變項的變異性樣本間的比較亦能反應因素的特性實務層次的問題因素分析受到相關係數的特性所影響,任何影響相關係數的原因都可能干擾因素分析樣本數、遺漏值、常態性、線性關係、偏離值多元共線性(multicollinearity)與單一性(singularity),極端的共線性與單一性對於因素分析具有影響相關係數的大小:如果觀察矩陣中相關係數均小於.3,抽取因素能力低,可能需放棄使用因素分析因素分析的偏離值:當某測量變項不被因素所解釋時。當僅有兩個變項所決定的因素,可能是一種不穩定的因素。,6,因素分析的類型,不同萃取方法皆產生直交的成分或因素來反應觀察相關矩陣R不同點在於抽取的標準不同,例如最大變異、最小殘差等當樣本數大、觀察變項數目多或共同性估計相近時,各方法差異不大因素分析結果是否穩定不是決定於萃取的方法而是變項間的關係方法目的PCA:單純的化簡測量(得到成分components)FA:尋找測量題目背後的結構與理論意涵,並利用這些潛在結構進行分析應用(得到因素factors)萃取過程差異在於兩者對於觀察相關矩陣的處理方式也就是處理變異數上的差異PCA analyzes variance:觀察變項的所有變異量均被分析(觀察相關係數矩陣中對角線總和)FA analyzes covariance:僅有共同變異量(shared variance)被分析(觀察相關係數矩陣中對角線以共同性來取代)萃取結果PCA:以最少的直交成分來解釋最大的變項變異量具有單一的數學解FA:以最少的直交因素來反應相關矩陣具有不同的最佳解,7,不同的萃取方法一,主成分法(Principal components)目的在使每一個成分能夠代表最大的觀察變異量第一個主成分為觀察變項的線性整合,能夠反應最大的變異量,依序發展各主成分可以得到最大的解釋變異量主要因素法(principal factors)以共同性為分析的對象因素的抽取以疊代程序來進行,起始值為SMC(squared multiple correlations),反覆帶入共同性直到無改善能夠產生最理想的重製矩陣映像因素萃取(image factor extraction)各觀察變項的變異量為其他變項的投射。每一個變項的映像分數係以多元迴歸的方法來計算,映像分數的共變矩陣被進行PCA類似PCA,能夠產生單一的數學解,對角線與FA相同,為共同性因素負荷量不是相關係數,而是變項與因素的共變,8,不同的萃取方法二,最大概似因素萃取(maximum likelihood factor extraction)以因素負荷量的母數估計數為主要目的計算樣本求得之觀察矩陣能夠反應母體的最大機率之負荷量因素可進行顯著性考驗,適用於驗證性分析也即是求取變項與因素間的最大典型相關無加權最小平方法(unweighted least squares factoring)求取觀察與重製矩陣的殘差的最小平方值只有非對角線上的數據被納入分析共同性是分析完成之後才進行計算一般加權最小平方法(generalized weighted least squares factoring)在無加權平方法下,增加權數的考量(以共同性加權)有較大的共同變異的變項被較大的加權Alpha法(alpha factoring)處理共同因素的信度,提高因素的類化性(generalizability)共同性的估計是在使因素的alpha信度達到最大,9,Rotation 轉軸,轉軸的時機依目的:得到最佳的結構,或保留因素的原始面貌利用因素散佈圖協助判斷:觀察變項應在各軸上:接近各軸,遠離原點,形成群落Orthogonal rotation(直交轉軸)Varimax:使負荷量的變異數在因素內最大(=1)Quartimax:使負荷量的變異數在變項內最大(=0)Equamax:綜合前兩者,使負荷量的變異數在因素內與變項內同時最大(=.5)(gamma)指標:表示簡化的程度:0表變項最簡化,1表因素最簡化,.5表兩者各半Oblique rotation(斜交轉軸)允許因素間具有相關之轉軸因素間最大的相關由(delta)決定,負的越小,表示月接近直交,=-4為直交,接近1時,因素間的相關可能最高Direct oblimin:使因素負荷量的差積(cross-products)最小化Direct quartimin:使型態矩陣中的負荷量平方的差積(cross-products)最小化Orthoblique:使用quartimax算式將因素負荷量重新量尺化(rescaled)以產生直交的結果,因此最後的結果保有斜交的性質Promax:將直交轉軸(varimax)的結果再進行有相關的斜交轉軸。因素負荷量取2,4,6次方以產生接近0但不為零的值,藉以找出因素間的相關,但仍保有最簡化因素的特性,10,直交轉軸概念圖,11,12,四種萃取方法之比較,13,14,因素分析的範例說明,15,特徵向量與特徵值,相關矩陣中的對角線代表變項的標準化的變異量(1.00)因素分析經由因素的萃取對於觀察變項相關矩陣進行萃取後,轉換成為特徵值(L)L=VRV VV=IV稱為特徵向量上式可以轉換為R=AA,A稱為因素負荷矩陣,16,因素負荷矩陣,前式可以轉換為R=AA,A稱為因素負荷矩陣,17,直交轉軸,Varimax法:將因素負荷量的變異數最大化將高相關更高,低相關更低(19度轉軸),18,共同性與解釋百分比,Communality共同性:變項的變異量被因素解釋的百分比,(-.086)2+(.981)2=.970,(997)2+(-.040)2=.996,(.994)2+(.026)2=.989,(-.071)2+(-.997)2=.960,3.915,1.994,1.919,SUM=,.98,.50,.48,%=,19,重製矩陣,重製矩陣為由因素所推導出的相關矩陣,20,Factor scores 因素分數,因素分數的產生由因素負荷量為基礎,透過迴歸分析原理來獲得一組因素分數係數,即可計算因素分數因素分數係數為因素負荷量與相關係數反矩陣的乘積因素分數為原始變項分數轉換為Z分數後乘以因素分數係數而得各變項由因素得到的預測分數公式如下,21,22,因素數目判斷原則,一般原則:解釋變異量因素越多,解釋變異量越大因素越多,簡效性越低(模式越複雜)因素數目判斷方法特徵值大於1(表示大於1.00的原始觀察變異量)因素數目合理範圍為變項數除以3至除以5之間陡坡檢定Scree test(Cattell,1966)特徵值明顯出現變化時為合理數目殘差分析殘差類似於各變項間的相關在移除了因素的影響後的淨相關檢驗不同因素數目下,殘差矩陣中的數值,高於.05或.10以上者過多,表示可能在其他因素因素負荷量檢驗單一觀察變項的因素並不恰當二個觀察變項的因素在兩變項相關高(r.7),與其他變項相關低時,為合理。顯著性考驗驗證性因素分析提供因素的顯著性考驗Bartlett檢驗考驗全部因素的顯著性意義研究上的考量探索性的目的,想要瞭解因素的結構時,邊緣強度的因素可以保留,以瞭解其性質當研究者需要穩定的因素進行研究時,保留信度高的因素即可,23,因素的解釋與命名,因素負荷量的判斷.71(50)優秀.63(40)非常好.55(30)好.45(20)普通.32(10)不好.32以下:不及格不同轉軸法下的考量直交轉軸使用轉軸後矩陣斜交轉軸使用型態矩陣,以獲悉因素的意義(結構矩陣中的係數被因素間的相關擴張,導致高估),

    注意事项

    本文(探索因素分析主成分分析与因素分析.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开