欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数理方程第一章典型方程与定解条件.ppt

    • 资源ID:5383323       资源大小:1.58MB        全文页数:30页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数理方程第一章典型方程与定解条件.ppt

    下午11时38分,1,汤 燕 斌华中科技大学数学与统计学院,数学物理方程与特殊函数,下午11时38分,2,数学物理方程与特殊函数,数学和物理的关系,课程的主要内容,数学和物理从来是没有分开过的,数学物理方程的定义,用微分方程来描述给定的物理现象和物理规律。,三种方程、四种求解方法、二个特殊函数,分离变量法行波法积分变换法格林函数法,波动方程热传导拉普拉斯方程,贝塞尔函数勒让德函数,下午11时38分,3,哈密尔顿算子或梯度算子,读作nabla,拉普拉斯算子,微积分知识回顾,与梯度算子有关的场论运算,平面上的拉普拉斯算子,常微分方程的求解:常见的一阶方程、可降阶高阶方程、二阶线性方程,傅里叶级数理论:傅里叶级数及其系数、正弦级数、余弦级数,下午11时38分,4,拉普拉斯方程:,热传导方程:,波动方程:,三类偏微分方程,两种特殊函数,贝塞尔方程,勒让德方程,琴弦的振动;杆、膜、液体、气体等的振动;电磁场的振荡等,热传导中的温度分布;流体的扩散、粘性液体的流动,空间的静电场分布;静磁场分布;稳定温度场分布,的解:贝塞尔函数,的解:勒让德函数,下午11时38分,5,一、基本方程的建立,第一章 一些典型方程和定解条件的推导,二、定解条件的推导,三、定解问题的概念,下午11时38分,6,常见数学物理方程的导出,确定所要研究的物理量u,比如位移、场强、温度,根据物理规律建立微分方程,通过合理的数学近似对方程进行化简,数学物理方程定解问题的提法,泛定方程(波动方程、热传导方程、拉普拉斯方程),定解问题:,定解条件(初始条件,边界条件),下午11时38分,7,一、基本方程的建立,条件:均匀柔软的细弦,在平衡位置附近作微小横振动。不受外力影响。,例1、弦的振动,下午11时38分,8,弦振动的相关模拟,下午11时38分,9,弦振动的相关模拟,下午11时38分,10,弦振动的相关模拟,下午11时38分,11,弦振动的相关模拟,下午11时38分,12,波的传播的相关模拟,下午11时38分,13,弦振动的相关模拟,下午11时38分,14,简化假设:,(2)横向振幅极小,张力与水平方向的夹角很小。,(1)弦是柔软的,弦上的任意一点的张力沿弦的切线方向。,牛顿运动定律:,横向:,纵向:,其中:,其中:,下午11时38分,15,其中:,一维波动方程,令:,-非齐次方程,自由项,-齐次方程,忽略重力作用:,下午11时38分,16,从麦克斯韦方程出发:,在自由空间:,例2、时变电磁场,下午11时38分,17,对第一方程两边取旋度,,根据矢量运算:,由此得:,得:,即:,同理可得:,电场的三维波动方程,磁场的三维波动方程,下午11时38分,18,例3、热传导,所要研究的物理量:,温度,根据热学中的傅立叶试验定律,在dt时间内从dS流入V的热量为:,从时刻t1到t2通过S流入V的热量为,高斯公式(矢量散度的体积分等于该矢量的沿着该体积的面积分),热传导现象:当导热介质中各点的温度分布不均匀时,有热量从高温处流向低温处。,下午11时38分,19,流入的热量导致V内的温度发生变化,流入的热量:,温度发生变化需要的热量为:,热传导方程,如果物体内有热源,则温度满足非齐次热传导方程,下午11时38分,20,例4、静电场,电势u,确定所要研究的物理量:,根据物理规律建立微分方程:,对方程进行化简:,拉普拉斯方程,泊松方程,下午11时38分,21,同一类物理现象中,各个具体问题又各有其特殊性。边界条件和初始条件反映了具体问题的特殊环境和历史,即个性。,初始条件:能够用来说明某一具体物理现象初始状态的条件。,边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件。,二、定解条件的推导,其他条件:能够用来说明某一具体物理现象情况的条件。,下午11时38分,22,初始时刻的温度分布:,B、热传导方程的初始条件,C、泊松方程和拉普拉斯方程的初始条件,不含初始条件,只含边界条件条件,A、波动方程的初始条件,1、初始条件描述系统的初始状态,系统各点的初位移系统各点的初速度,下午11时38分,23,(2)自由端:x=a 端既不固定,又不受位移方向力的作用。,2、边界条件描述系统在边界上的状况,A、波动方程的边界条件,(1)固定端:对于两端固定的弦的横振动,其为:,或:,(3)弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。,或,第一类边界条件,第二类边界条件,第三类边界条件,下午11时38分,24,B、热传导方程的边界条件,(1)给定温度在边界上的值,(S为给定区域v 的边界),(2)绝热状态,(3)热交换状态,牛顿冷却定律:单位时间内从物体通过边界上单位面积流到周围介质的热量跟物体表面和外面的温差成正比。,交换系数;周围介质的温度,第一类边界条件,第二类边界条件,第三类边界条件,C、拉普拉斯方程的边界条件,下午11时38分,25,1、定解问题,三、定解问题的概念,(1)初始问题:只有初始条件,没有边界条件的定解问题;(2)边值问题:没有初始条件,只有边界条件的定解问题;(3)混合问题:既有初始条件,也有边界条件的定解问题。,把某种物理现象满足的偏微分方程和其相应的定解条件结合在一起,就构成了一个定解问题。,2、定解问题的适定性,解的存在性:定解问题是否有解;解的唯一性:是否只有一解;解的稳定性:定解条件微小变动时,解是否有相应的微小变动。,下午11时38分,26,(4)按未知函数及其导数的系数是否变化分为常系数和变系数微分方程;(5)按自由项是否为零分为齐次方程和非齐次方程,3、微分方程一般分类,(1)按自变量的个数,分为二元和多元方程;(2)按未知函数及其导数的幂次,分为线性微分方程和 非线性微分方程;(3)按方程中未知函数导数的最高阶数,分为一阶、二阶 和高阶微分方程;,下午11时38分,27,线性方程的解具有叠加特性,4、叠加原理,几种不同的原因的综合所产生的效果等于这些不同原因单独产生的效果的累加。(物理上),判断下列方程的类型,思考,下午11时38分,28,5、微分方程的解,古典解:如果将某个函数 u 代入偏微分方程中,能使方程成为恒等式,且方程中出现的偏导数都连续,则这个连续函数就是该偏微分方程的古典解。,通解:解中含有相互独立的和偏微分方程阶数相同的任意常数的解。,特解:通过定解条件确定了解中的任意常数后得到的解。,形式解:未经过严格数学理论验证的解为形式解。,6、求解方法,分离变量法、行波法、积分变换法、格林函数法,下午11时38分,29,四、两个自变量的二阶线性偏微分方程的分类,两个自变量的二阶线性偏微分方程的一般形式,(1.4.1),其中,,都是区域,上的实函数,,并假定它们是连续可微的。,若在区域,上某点,处满足,则称方程(1.4.1)在点,处是双曲型的;若在点,处满足,,则称方程(1.4.1)是抛物型的;,处满足,则称方程(1.4.1),是椭圆型的。,若在点,在点,下午11时38分,30,如果方程(1.4.1)在所讨论的区域,内每点都是,双曲型(抛物型或椭圆型),则称方程在区域内也是双曲型(抛物型或椭圆型)。,

    注意事项

    本文(数理方程第一章典型方程与定解条件.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开