欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线段和差的最值问题教案课件PPT.ppt

    • 资源ID:5373806       资源大小:318.49KB        全文页数:31页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线段和差的最值问题教案课件PPT.ppt

    线段和差的最值问题解题策略 单人棋 2014年10月,两条线段和的最小值两点之间,线段最短,线段和差的最值问题解题策略,两条线段差的最大值三角形两边之差小于第三边,当P运动到E时,PAPB最小,当Q运动到F时,QDQC最大,线段和差的最值问题解题策略,当P运动到E时,PAPB最小,当Q运动到F时,QDQC最大,第一步,寻找、构造几何模型第二步,计算,一、求两条线段之和的最小值,例1:在ABC中,AC=BC=2,ACB=90O,D是BC边的中点,E是AB上的一动点,则EC+ED的最小值为。,A,C,B,D,E,p,例2:ABC中,AC=3,BC=4,AB=5,试在AB上找一点P,在BC上取一点M,使CP+PM的值最小,并求出这个最小值。,A,B,C,P,M,C/,例1、例2中的最小值问题,所涉及到的路径,虽然都是由两条线段连接而成,但是路径中的动点与定点的个数不同,例1 中的路径为“定点动点定点”,是两个定点一个动点,而例2中的路径是“定点动点动点”,是一个定点两个动点,所以两个题的解法有较大差异,例1是根据两点之间线段最短求动点的位置,例2是根据垂线段最短找两个动点的位置。,规律总结,二、求三角形周长的最小值,例3:已知二次函数图像的顶点坐标为C(3,-2),且在x轴上截得的线段AB的长为4,在y轴上有一点P,使APC的周长最小,求P点坐标。,A,C,B,A/,O,P,例4:抛物线y=ax2+bx+c经过点A(-4,3),B(2,0),当x=3和x=-3时,这条抛物线上对应点的纵坐标相等,经过点C(0,-2)的直线a与x轴平行。(1)求直线AB和抛物线,(2)设直线AB上点D的横坐标为-1,P(m,n)是抛物线上的一动点,当POD的周长最小时,求P点坐标。2010南通)已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等经过点C(0,-2)的直线l与x轴平行,O为坐标原点(1)求直线AB和这条抛物线的解析式;(2)以A为圆心,AO为半径的圆记为A,判断直线l与A的位置关系,并说明理由;(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当PDO的周长最小时,求四边形CODP的面积考点:二次函数综合题专题:压轴题分析:(1)用待定系数法即可求出直线AB的解析式;根据“当x=3和x=-3时,这条抛物线上对应点的纵坐标相等”可知:抛物线的对称轴为y轴,然后用待定系数法即可求出抛物线的解析式;(2)根据A点坐标可求出半径OA的长,然后判断A到直线l的距离与半径OA的大小关系即可;(3)根据直线AB的解析式可求出D点的坐标,即可得到OD的长,由于OD的长为定值,若POD的周长最小,那么PD+OP的长最小,可过P作y轴的平行线,交直线l于M;首先证PO=PM,此时PD+OP=PD+PM,而PD+PMDM,因此PD+PM最小时,应有PD+PM=DM,即D、P、M三点共线,由此可求得P点的坐标;此时四边形CODP是梯形,根据C、O、D、P四点坐标即可求得上下底DP、OC的长,而梯形的高为D点横坐标的绝对值由此可求出四边形CODP的面积解答:解:(1)设直线AB的解析式为y=kx+b,则有:4k+b32k+b0,解得k12b1;直线AB的解析式为y=-12x+1;由题意知:抛物线的对称轴为y轴,则抛物线经过(-4,3),(2,0),(-2,0)三点;设抛物线的解析式为:y=a(x-2)(x+2),则有:3=a(-4-2)(-4+2),a=14;抛物线的解析式为:y=14x2-1;(2)易知:A(-4,3),则OA=42+32=5;而A到直线l的距离为:3-(-2)=5;所以A的半径等于圆心A到直线l的距离,即直线l与A相切;(3)过D点作DMy轴交直线于点M交抛物线于点P,则P(m,n),M(m,-2);PO2=m2+n2,PM2=(n+2)2;n=14m2-1,即m2=4n+4;PO2=n2+4n+4=(n+2)2,即PO2=PM2,PO=PM;易知D(-1,32),则OD的长为定值;若PDO的周长最小,则PO+PD的值最小;PO+PD=PD+PMDM,PD+PO的最小值为DM,即当D、P、M三点共线时PD+PM=PO+PD=DM;此时点P的横坐标为-1,代入抛物线的解析式可得y=14-1=-34,即P(-1,-34);S四边形CPDO=12(CO+PD)|xD|=12(2+32+34)1=178点评:此题主要考查了二次函数解析式的确定、直线与圆的位置关系、图形面积的求法等知识,还涉及到解析几何中抛物线的相关知识,能力要求极高,难度很大,A,B,O,C,D,P,规律总结,例3,例4中最小值问题,所涉及到的路径虽然都是有两条动线段连接而成,且路径都是“定点动点定点”,但是动点运动的路线不同,例3是直线,例4是曲线,因此它们的解法有很大不同,例3是根据两点之间线段最短找到动点的位置,例4是根据垂线段最短找到所求的两个动点的位置。,三、求四边形周长最小值问题,例5:在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.,要求四边形MNFE的周长最小?,把三条线段转移到同一条直线上就好了!,第一步 寻找、构造几何模型,E,F,E/,F/,M,N,第二步 计算勾股定理,小结,线段和差的最值问题解题策略,经典模型:台球两次碰壁问题,经验储存:没有经验,难有思路,例6:在平面直角坐标系中,RtAOB的顶点坐标分别是A(-2,0),O(0,0),B(0,4),把AOB绕O点按顺时针旋转90度,得到COD,(1)求C、D的坐标,(2)求经过A、B、D三点的抛物线。(3)在(2)中的抛物线的对称轴上取两点E、F(E在F点的上方),且EF=1,当四边形ACEF的周长最小时,求E、F的坐标。,A,B,C,E,F,D,D/,O,规律总结,例5、例6中的最小值问题所涉及到的路径,虽然都是由三条动线段连接而成,且路径都是“定点动点动点定点”,但是例5中的量动点间的线段长度不确定,而例6的两动点间的线段长度为定值,正是由于这点的不同,使得它们的解题方法有很大差异,例5是根据两点之间线段最短找到动点的位置,例6是通过构造平行四边形先找到所求的其中一个动点的位置,另一个位置也随之确定。,1、已知在对抛物线的对称轴上存在一点P,使得PBC的周长最小,请求出点P的坐标.,要求PBC的周长最小?,第一步 寻找、构造几何模型,只要PB+PC最小就好了!,经典模型:牛喝水!,线段和差的最值问题解题策略,把PB+PC转化为PA+PC!,当P运动到H时,PA+PC最小,第二步 计算勾股定理,2、对于动点Q(1,n),求PQ+QB的最小值.,要求PQ+QB的最小值?,线段和差的最值问题解题策略,第一步 寻找、构造几何模型,经典模型:牛喝水!,线段和差的最值问题解题策略,把PQ+QB转化为PQ+QA!,当Q运动到E时,PQ+QA最小,第二步 计算勾股定理,线段和差的最值问题解题策略,第二步 计算勾股定理,把PQ+QB转化为PQ+QA!,当Q运动到E时,PQ+QA最小,线段和差的最值问题解题策略,小结,E?F!,3.如图,AOB=45,角内有一动点P,PO=10,在AO,BO上有两动点Q,R,求PQR周长的最小值。,A,B,O,P,D,E,R,Q,4.如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM.求证:AMBENB;当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由;,

    注意事项

    本文(线段和差的最值问题教案课件PPT.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开