欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线性变换及其矩阵表示.ppt

    • 资源ID:5373736       资源大小:1.47MB        全文页数:35页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性变换及其矩阵表示.ppt

    3 线性变换及其矩阵表示,一、线性变换的引入,在技术科学、社会科学和数学的一些分支中,不同向量空间之间的线性变换起着重要的作用。因此,为了研究两个向量空间之间的关系,有必要考虑能够从一个向量空间到另一个向量空间的转换关系的函数。事实上,在我们的日常生活中,也经常遇到这种转换。当我们欲将一幅图像变换为另一幅图像时,通常会移动它的位置,或者旋转它。例如,函数就能够将图像的坐标和坐标改变尺度。根据和大于1还是小于1,图像就能够被放大或者缩小。,线性变换的定义,例1,判断下面两个从R3到R2变换的类型(线性或非线性),例2 定义在闭区间上的全体连续函数组成实数域上的一个线性空间V,在这个空间中变换是一个线性变换.,证明,设,则有,例3 线性空间V中的恒等变换(或称单位变换)I,是线性变换。,证明,则有,设,所以恒等变换是线性变换。,例4 线性空间V中的零变换是线性变换。,证明,所以零变换是线性变换。,例5 证明实内积空间,变换到实数域 R上的线性变换。,是一种将笛卡儿积,例6,A称为线性变换T的标准矩阵(Standard matrix)。,。,易证T是线性变换.,二、线性变换的性质,证明,从而,证明,则,则,定义 设T是线性空间 中的线性变换,在 中取定一个基,如果这个基在变换T下的象为,三、线性变换在给定基下的矩阵,其中,那末,A就称为线性变换T在基 下的矩阵。,上式可表示为,例6,例7,例8,解由条件知,定理,设线性变换T 在基e1,e2,en下的矩阵是A,向量在基e1,e2,en下的坐标是(x1,x2,xn),则T()在基e1,e2,en下的坐标(y1,y2,yn)可以按下式计算,定理 线性变换的矩阵表示式,四、线性变换在不同基下的矩阵,上面的几个例子表明:同一个线性变换在不同的基下有不同的矩阵,那么这些矩阵之间有什么关系呢?,定理表明B与A相似,且两个基之间的过渡矩阵P就是相似变换矩阵。,于是,证明,因为 线性无关,,所以,练习,解,定义,思考题,正交变换的定义,欧氏空间V的线性变换T 称为正交变换,如果它保持中V任何两个向量的内积不变,即对V中的任意向量,,恒有(T,T)=(,),定理,设T是欧氏空间V的 线性变换,则T是正交变换的充分必要条件是下列条件之一成立:,(1)T保持向量的长度不变,即对V中的任意向量,都有|T()|=|;,(2)T把一个标准正交基映射为一个标准正交基;,(3)T在任一个标准正交基下的矩阵都是正交矩阵。,注:正交变换的乘积是正交变换;正交变换是可逆的,且其逆变换也是正交变换。正交变换(Gives旋转变换、Householder镜像变换);正交投影变换;对称变换等。,

    注意事项

    本文(线性变换及其矩阵表示.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开