欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    直线与椭圆的位置关系(二).ppt

    • 资源ID:5369762       资源大小:251KB        全文页数:24页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    直线与椭圆的位置关系(二).ppt

    (三).中点弦问题,弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。,总结:,练习:中心在原点一个焦点为的椭圆的截直线所得弦的中点横坐标为,求椭圆的方程,分析:根据题意可设椭圆的标准方程,与直线方程连里解方程组,利用中点公式求得弦的中点的横坐标,最后解关于的方程组即可,解:设所求椭圆的方程为由得把直线方程代入椭圆方程,整理得 设弦的两个端点为,则由根与系数的关系得 又中点的横坐标为由此得,解、得:,例2:在椭圆x2+4y2=16中,求通过点M(2,1)且被这一点平分的弦所在的直线方程.,解一:(显然,只须求出这条直线的斜率即可),如果弦所在的直线的斜率不存在,即直线垂直于x轴,则点M(2,1)显然不可能是这条弦的中点。故可设弦所在的直线方程为y=k(x-2)+1,代入椭圆方程得x2+4k(x-2)+12=16即得(1+4k2)x2-(16k2-8k)x+16k2-16k-12=0直线与椭圆有两个交点,故=16(k2+4k+3)0又,两式联立解得k=,,直线方程为x+2y-4=0.,评:.本例在解题过程中,充分考虑了椭圆与直线相交有两个交点这一事实,由此得出=16(k2+4k+3)0,又利用了中点坐标,列出了方程,从而使问题得到解决.这种方法是常用的方法,大家务必掌握.,但是,这种解法显得较繁(特别是方程组 16()0显得较繁),解二:设弦的两个端点分别为P(x1,y1),Q(x2,y2)则 x1+x2=4,y1+y2=2在P(x1,y1),Q(x2,y2)椭圆上,故有x12+4y12=16 x22+4y22=16两式相减得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0点M(2,1)是PQ的中点,故x1x2,两边同除(x1-x2)得,即4+8k=0 k=,弦所在的直线方程为y-1=(x-2)即x+2y-4=0,.评:.本解法设了两个端点的坐标,而我们并没有真的求出它们,而是通过适当变形,得到了,从而揭示了弦所在的直线斜率k与弦中点坐标(x0,y0)之间在椭圆标准方程的前提下的关系:mx0+ny0k=0.显得很简便.但在解题过程中应注意考虑x1x2的条件!如果有这种可能性,可采用讨论的方法,先给以解决.如果不可能有这种情况,则应先说明,例2:在椭圆x2+4y2=16中,求通过点M(2,1)且被这一点平分的弦所在的直线方程.,练习:在椭圆 中,求通过点M(1,1)且被这一点平分的弦所在的直线方程.,综合:已知椭圆 与直线 相交于 两点,是的 中点若,斜率为(为原点),求椭圆方程,分析:本例是一道综合性比较强的问题,求解本题要利用中点公式求出点坐标,从而得的斜率,另外还要用到弦长公式:,解:由方程组,消去 整理得:,即:,解得,所求的椭圆方程为,(四).椭圆中的最值问题,1.过椭圆 的右焦点与x轴垂直的直线与椭圆交于A,B两点,求弦长|AB|,思考:最大的距离是多少?,3.如果点的坐标为(,),F1是椭圆 的左焦点,点是椭圆上 的动点,求:(1)|PA|+|PF1|的最小值;(2)|PA|+|PF1|的最大值和最小值,(2)设右焦点为,欲求 的最大值怎样使它与 联系在一起呢?,数形结合简便直观,4.,5.设AB为过椭圆 的中心的弦,F1是左焦点,求 的面积的最大值.,O,A,B,F1,F2,3、弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。,1、直线与椭圆的三种位置关系及等价条件;,2、弦长的计算方法:(1)垂径定理:|AB|=(只适用于圆)(2)弦长公式:|AB|=(适用于任何曲线),小 结:,作业,1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,2.无论k为何值,直线y=kx+2和曲线交点情况满足()A.没有公共点 B.一个公共点C.两个公共点 D.有公共点,3、y=kx+1与椭圆 恰有公共点,则m的范围()A、(0,1)B、(0,5)C、1,5)(5,+)D、(1,+)4、过椭圆 x2+2y2=4 的左焦点作倾斜角为300的直线,则弦长|AB|=_,5、求椭圆 被过右焦点且垂直于x轴 的直线所截得的弦长。,7、中心在原点,一个焦点为F(0,)的椭圆被 直线 y=3x-2所截得弦的中点横坐标是1/2,求椭圆 方程。,6、如果椭圆被 的弦被(4,2)平分,那么这弦所在直线方程为()A、x-2y=0 B、x+2y-4=0 C、2x+3y-12=0 D、x+2y-8=0,作业,1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,2.无论k为何值,直线y=kx+2和曲线交点情况满足()A.没有公共点 B.一个公共点C.两个公共点 D.有公共点,3、y=kx+1与椭圆 恰有公共点,则m的范围()A、(0,1)B、(0,5)C、1,5)(5,+)D、(1,+)4、过椭圆 x2+2y2=4 的左焦点作倾斜角为300的直线,则弦长|AB|=_,5、求椭圆 被过右焦点且垂直于x轴 的直线所截得的弦长。,7、中心在原点,一个焦点为F(0,)的椭圆被 直线 y=3x-2所截得弦的中点横坐标是1/2,求椭圆 方程。,6、如果椭圆被 的弦被(4,2)平分,那么这弦所在直线方程为()A、x-2y=0 B、x+2y-4=0 C、2x+3y-12=0 D、x+2y-8=0,

    注意事项

    本文(直线与椭圆的位置关系(二).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开