欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    晶体的宏观对称.ppt

    • 资源ID:5357374       资源大小:10.11MB        全文页数:50页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    晶体的宏观对称.ppt

    第三章 晶体的宏观对称,晶体对称的概念与特点,对称型,对称要素和对称定律,对称要素组合定理,晶体的对称分类,晶体的对称性是晶体的基本性质之一。内部特征 格子构造 外部现象 晶体的几何多面体形态 晶体的物理性质 化学性质,第三章 晶体的宏观对称,一、对称的概念是宇宙间的普遍现象。是自然科学最普遍和最基本的概念,是建造大自然的密码。对称是指物体或图形中相同部分作有规律的重复。对于晶体外形而言,就是晶面与晶面、晶棱与晶棱、角顶与角顶的有规律重复。,二、晶体的对称1.由于晶体都具有格子状构造,而格子状构造就是质点在三维空间周期重复的体现,因此,所以的晶体都是对称的。2.晶体的对称受格子构造规律的限制。即只有符合格子构造规律的对称才能在晶体上出现,因此,晶体对称又是有限的。3.晶体的对称既然取决于格子构造,因此晶体的对称不仅体现在外形上,也体现在物理性质上(光学、力学、热学、电学性质)。4.是晶体的基本性质之一。5.是晶体科学分类的依据。,三、晶体的对称操作和对称要素 在对晶体的对称研究中,为使晶体上相同部分作有规律重复,必须借助一定的几何要素(点、线、面)进行一定的操作(如反映、旋转、反伸等)才能实现,这些操作称为对称操作(symmetry operation),在操作中所借助的几何要素,称为对称要素(symmetry element)。对称面(symmetry plane)对称轴(symmetry axis)对称中心(center of symmetry)倒转轴(rotoinversion axis),对称面(P)对称面是一个假想的平面,亦称镜面。与之相应的对称操作是此平面的反映。由这个平面将图形平分后成互为镜像的两个相等部分,分别相当于物体本身和它的像。对称面必通过晶体的中心。,m,对称面 非对称面,对称操作:对于此平面的反映,标志:两部分上对应点的连线是否与 对称面垂直等距,垂直并平分晶面 垂直晶棱并通过它的中心 包含晶棱,可能出现的位置:,数目:0 P 9,对称轴(Ln),定义:通过晶体几何中心的一根假 想的直线,对称操作:是围绕此直线的旋转,特征:当图形围绕此直线旋转一定角度后,可使相 同部分重复(图形复原),重复时所旋转的最小角度称基转角()旋转一周重复的次数称为轴次(n)n=360,二次对称轴(two-fold rotation)(L2),=360/2=180,A Symmetrical Pattern,6,6,180 rotationto reproduce a motif in a symmetrical pattern,Motif,Element,Operation,the symbol for a two-fold rotation,first operation step,second operation step,三次对称轴(Three-fold rotation)(L3),=360/3=120,6,6,6,step 1,step 2,step 3,A Symmetrical Pattern,120 rotationto reproduce a motif in a symmetrical pattern,Operation,the symbol for a three-fold rotation,2-fold,3-fold,4-fold,6-fold,其他的对称轴(没有5-fold 和 6-fold 的),A.过一对平行晶面的中心 B.过一对晶棱的中心 C.相对两角顶的连线 D.角顶、晶面中心和棱中点任意两个的连线,数目,0 L2 6,0 L3 4,0 L4 3,0 L6 1,对称轴可能出现的位置为,定义:位于晶体几何中心的一个假想的点,对称操作:是对此点的反伸,特点:如果通过此点作任意直线,则在此直线上距对称中心等距离的两端上必定可以找到对应点,识别标志:两两成对 对对平行 同形等大 方向相反,对称中心(C),所有晶面,旋转反伸轴(Lin),定义:一根过晶体几何中心假想的直线对称操作:围绕此直线的旋转和对此直线上的一个点反伸 的复合操作,值得指出的是,除Li4外,其余各种旋转反伸轴都可以用其它简单的对称要素或它们的组合来代替,其间关系如下:Li1=C,Li2=P,Li3=L3+C,Li6=L3+P但一般我们在写晶体的对称要素时,保留Li4 和Li6,而其他旋转反伸轴就用简单对称要素代替。这是因为Li4 不能被代替,Li6在晶体对称分类中有特殊意义。但是,在晶体模型上找Li4往往是比较困难的,因为容易误认为L2。我们不能用L2代替Li4,就像我们不能用L2代替L4一样。因为L4高于L2,Li4也高于L2。在晶体模型上找对称要素,一定要找出最高的。,由于晶体是具有格子构造的固体物质,这种质点格子状的分布特点决定了晶体的对称轴只有n=1,2,3,4,6这五种,不可能出现n=5,n 6的情况。为什么呢?1、直观形象的理解:垂直五次及高于六次的对称轴的平面结构不能构成面网,且不能毫无间隙地铺满整个空间,即不能成为晶体结构。,晶体对称定律,2.晶体对称定律数学证明方法:,内容:只能出现轴次(n)为一次、二次、三次、四次和六次的对称轴,而不可能存在五次及高于六次的对称轴。轴次 n 的确定:n=360/aa+2a cosa=ma cosa=(m-1)/2-2 m-1 2由于平行行列的结点间距相等,m只能取整数m=3,2,1,0,-1 a=0,60,90,120,180 n=1,6,4,3,2,(但是,在准晶体中可以有5、8、10、12次轴),1、至少有一端通过晶棱中点的对称轴只能是几次对 称轴?2、一对正六边形的平行晶面之中点的连线,可能是 几次对称轴的方位?3、在只有一个高次轴的晶体中,能否有与高次轴斜 交的P或L2存在?为什么?,思考题,四、对称要素的组合,对称要素组合不是任意的,必须符合对称要素的组合定律;当对称要素共存时,也可导出新的对称要素。,对称要素组合定理:,定理1:如果有一个L2垂直于Ln,则必有n个L2垂直于Ln,LnL2LnnL2(任意两个相邻的L2的夹角是Ln基转角的一半)。例如:L4L2L44L2,L3L2L33L2逆定理:如果两个相邻的L2相交,在交点上垂直两个L2方向必会产生一个Ln,其基转角是两个L2夹角的两倍。并导出其他n个在垂直Ln平面内的L2。思考:两个L2相交30,交点处并垂直L2所在平面会产生什么对称轴?,定理2:如果一个对称面P垂直于偶次对称轴Ln(偶),交点必为对称中心:Ln(偶)P LnPC。如L4PL4PC 逆定理:如果有一个偶次对称轴Ln(偶)与对称中心C共存,则过C且垂直于该对称轴必有一对称面P,即 Ln(偶)C LnPC。或,如果有一个对称面P与对称中心C共存,则过C且垂直于P必有一个Ln(偶),即P C Ln(偶)PC这一定理说明了L2、P、C三者中任两个可以产生第三者。因为偶次轴包含L2。,定理3:如果有一个对称面P包含对称轴Ln,则必有n个P同时包含Ln,即LnP/LnnP/(相邻的两个P的夹角为Ln基转角的一半);如L3 P/L33P/逆定理:两个对称面P相交,其交线必为一对称轴Ln,其基转角为相邻两对称面夹角的两倍,并导出其他n个包含Ln的P。(定理3与定理1类似)思考:两个对称面相交60,交线处会产生什么对称轴?,定理4:如果有一个二次轴L2垂直于旋转反伸轴Lin,或有一个对称面P包含Lin,当n为奇数时,必有n个L2垂直Lin或n个P包含Lin:当n为偶数时,必有和n/2个L2垂直Lin或n/2个P包含Lin;Lin L2 Lin nL2 或Lin P/Lin nP/(n为奇数)Lin L2 Lin n/2L2 或Lin P/Linn/2 P/(n为偶数),定理5 如果两个对称轴Ln和Lm以角斜交时,围绕Ln必有n个共点且对称分布的Lm;同时,围绕Lm必有m个共点且对称分布的Ln:Ln Lm=nLmmLn。且任二相邻的Ln与Lm之间的交角均等于。,补充,有了对称要素组合定理,我们就可以判断一个晶体上的对称要素组合形式的正确与否。请大家根据上述对称要素组合定理判断下列对称要素组合形式是否正确:1、L43P 2、L22P 3、L32L2 4、3L2 5、L3PC 6、L6PC 怎么样?你的成绩如何?,应该为 L44P,根据组合定理3,4个P包含L4,根据组合定理3,2个P包含L2,应该为 L33L2,根据组合定理1,3个L2垂直L3,其中一个L2 直立,另外两个L2垂直这个直立的L2,应该为 L33P,因为L3不是偶次轴,所以不能产生C,P垂直L6,L6是偶次轴,所以产生C,对称要素组合测试,五、32个对称型(点群)及其推导,各种晶体的对称程度有很大的差别,主要表现在它们所具有的对称要素的种类、轴次和数目上。晶体形态中,全部对称要素的组合,称为该晶体形态的对称型 或 点群。一般来说,当强调对称要素时称对称型,强调对称操作时称点群。经过数学推导,证明对称型只有32种。我们将属于同一对称型的所有晶体,归为一类,称为晶类。晶类也只有32个。在32个晶类中,按它们所属的对称型特点划分为七个晶系。再按高次对称轴的有无和高次对称轴的数目,将七个晶系并为三个晶族。,对称型的书写顺序一般是首先写从高到低不同轴次的对称轴或旋转反伸轴,其次写对称面,最后写对称心。但在等轴晶系中,不论一个对称型中有无大于3次的对称轴,3次对称轴L3应当始终放在第2位。,请同学们自己分析一下课本第34页“图4-14 常见对称型中对称要素在晶体上的空间配置”各个图的对称型,如,A类对称型(高次轴不多于一个)的推导:A类对称型共有27种,根据对称要素对其推导1)对称轴Ln单独存在(原始式对称型),可能的对称型为L1;L2;L3;L4;L6。2)对称轴与对称轴的组合(轴式对称型)。在这里我们只考虑Ln与垂直它的L2的组合。根据上节所述对称要素组合规律LnL2 LnnL2,可能的对称型为:(L1L2=L2);L22L2=3L2;L33L2;L44L2;L66L2 如果L2与Ln斜交有可能出现多于一个的高次轴,这时就不属于A类对称型了。,3)对称轴Ln与垂直它的对称面P的组合(中心式对称型)。考虑到组合规律Ln(偶)PLn(偶)PC,则可能的对称型为L2PC;L4PC;L6PC。4)对称轴Ln与包含它的对称面的组合(平面式对称型)。根据组合规律Ln PLnnP,可能的对称型为:(L1P=P)L22P;L33P;L44P;L66P。,5)对称轴Ln与垂直它的对称面以及包含它的对称面的组合(轴面式对称型)。垂直Ln的P与包含Ln的P的交线必为垂直Ln的L2,即LnPP=LnPPL2=LnnL2(n+1)P(C)(C只在有偶次轴垂直P的情况下产生),可能的对称型为:(L1L22P=L22P);L22L23PC=3L23PC;(L33L24P=Li63L23P);L44L25PC;L66L27PC。,6)旋转反伸轴单独存在(倒转原始式对称型)。可能的对称型为:Li1=C;Li2=P;Li3=L3C;Li6=L3P。7)旋转反伸轴Lin与垂直它的L2(或包含它的P)的组合(倒转轴面式对称型)。根据组合规律,当n为奇数时LinnL2nP,可能的对称型为:(Li1L2P=L2PC);Li33L23P=L33L23PC;当n为偶数时 Lin(n/2)L2(n/2)P,可能的对称型为:(Li2L2P=L22P);Li42L22P;Li63L23P=L33L24P。,例:如果晶体中有一个L4,同时又有一个L2垂直于它和一个对称面垂直它,则L4 L2 L44L2(组合定律1),L4 PL4PC(组合定律2),因为垂直L4的P 与L2是包含关系,所以:L2 PL22P(组合定律3),这两个P中,有一个是垂直L4包含L2的,而另一个是包含 L4垂直L2,这个包含L4 的P以及垂直L4的P与L4组合(根据推导5):LnPP=LnPPL2=LnnL2(n+1)PC,最后产生对称型L44L25PC,金红石就是这种对称型。,7个组合类型中共导出35个对称型,其中重复的有8个,故实际导出的A类对称型共27种。请同学们将表中空格的内容填上,空格中的内容与表中其他内容是重复的。,还有5个是B类(高次轴多于一个)对称型,不要求推导。,此外还有3L44L36L29PC,3L24L33PC,3Li44L36P,对称型符号 习惯符号 按一定的顺序表示出晶体所有对称要素的符号 mLnmPC(n-对称轴轴次,从高到低排列,m-对称 轴或对成面的数目),国际符号(反映对称要素及其在空间的取向),n单独一个对称轴Ln 单独一个Lin N/m Ln垂直它的P的组合 N22或N2 Ln和垂直它的L2的组合(N1时,1省略)Nmm Ln和包含它的P的组合(N1时,1省略,N=2时,特写为mm2)N2m Lin和包含它的P以及垂直它的L2的组合 N/mmm Ln和包含它的P以及垂直它的P的组合 X3Y或X3第二位上为3者表示4L3,说明,六、晶体的对称分类,32晶类,高、中、低级晶族,7大晶系,属于同一对称型的晶体,高次轴的有无及多少,轴次的高低及数目,三斜晶系,单斜晶系,斜方晶系,三方晶系,四方晶系,六方晶系,等轴晶系,晶体,低级晶族,中级晶族,高级晶族,4L3,1L6,1L4,1L3,L2+P3,无L2或P,L2P3,低级晶族:所有的对称要素必定相互平行或垂直中级晶族:除高次轴外如有其他对称要素存在时,它们必定与唯一的高次轴垂直或平行高级晶族:除4L3外,必定还有3个相互垂直的二次轴 或四次轴,它们与每一个L3均以等角度相交,注意,课本P38表4-5非常重要,一定要熟记。,中级,晶体的对称分类,(接上表),七、五次对称轴、二十面体与准晶,这部分内容只要求大概了解。当球体(原子、离子)堆积时,形成二十面体最稳定,但二十面体上有五次轴,不能在晶体结构中出现,所以当晶体进一步长大后,晶体结构就不得不放弃二十面体结构。但在准晶体中有二十面体结构,在生物界也有二十面体结构,所以,准晶为生物界与非生物界架起一座桥梁。,思考题,对称的概念。晶体的对称和其它物质的对称有何本质区别?什么是晶体对称定律?证明之。怎样划分晶族和晶系?下列对称型各属何晶族和晶系?L2PC 3L2PC L44L25PC L66L27PC C 3L44L36L29PC L33L2 L33L23PC 3L24L33PC中级晶族晶体中能否有或P与唯一的高次轴(L3、L4、L6)斜交?为什么?,本章重点总结:1)对称要素:P,Ln,C,Lin;2)对称要素组合:4个定理;3)对称型:要学会用组合定理判断正确与否;4)晶体的对称分类:3个晶族,7个晶系,32个晶类。,

    注意事项

    本文(晶体的宏观对称.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开