欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    指数及指数幂的运算经典.ppt

    • 资源ID:5354657       资源大小:716.50KB        全文页数:39页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    指数及指数幂的运算经典.ppt

    2.1.1 指数与指数幂的运算(第一课时:根式),问题:当生物死亡后,它机体内原有的碳14会按确定的 规律衰减,大约每经过5730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量 P 与 死亡年数 t 之间的关系,考古学家根据(*)式可以知道生物死亡 t 年后,体内的碳14含量P的值.,(*),当生物死亡了5730年后,它体内的碳14含量P的值为,当生物死亡了57302年后,它体内的碳14含量P的值为,当生物死亡了6000年后,它体内的碳14含量P的值为,当生物死亡了10000年后,它体内的碳14含量P的值为,大家能指出右边各式的数学含义吗?,正整数指数幂中将指数的取值范围从整数推广到实数,根 式,1.平方根,若x2=a,则 x 叫做 a 的平方根(a0),2.立方根,若x3=a,则 x 叫做 a 的立方根,无,无,0,2,3,-2,-1,0,2,3,相信你们还没忘记!,类比分析,可是个好方法哟!,3.若x4=a,则 x 叫做 a 的 次方根(a0),4.若x5=a,则 x 叫做 a 的 次方根,5.若xn=a,则 x 叫做 a 的n次方根,四,五,定义1:,当n为奇数时,a的n次方根只有1个,用 表示,当n为偶数时,若a=0,则0的n次方根有1个,是0,若a0,则a的n次方根不存在,若a0,则a的n次方根有2个,(1)27的立方根等于_(4)25的平方根等于_(2)32的五次方根等于_(5)16的四次方根等于_(3)0的七次方根等于_(6)-16的四次方根等于_,5,3,2,2,不存在,0,小试牛刀,相信你能成功,定义1:,当n为奇数时,a的n次方根只有1个,用 表示,当n为偶数时,若a=0,则0的n次方根有1个,是0,若a0,则a的n次方根不存在,若a0,则a的n次方根有2个,定义2:,式子 叫做根式,n 叫做根指数,a 叫做被开方数,(当n是奇数),(当n是偶数,且a0),即:,我的知识我来构建,那么:,一定成立吗?,一定成立吗?,;,;,;,;,;,;,;,;,;,;,4,9,16,-1,-8,2,3,2,-3,1,试一试,有规律吗?,公式1:,公式2:,当n为奇数时,当n为偶数时,;,;,;,;,;,;,;,;,;,;,4,9,16,-1,-8,2,3,2,3,1,例1:求下列各式的值,知识点小结:,1、两个定义,2、两个公式:,定义1:,定义2:,式子 叫做根式,n 叫做根指数,a 叫做被开方数,1.求下列各式的值:,及时巩固,收获的东西才真正属于你们!,分数指数幂,复习:1、判断下列说法是否正确:(1)2是16的四次方根;(2)正数的n次方根有两个;(3)a 的n次方根是;(4),解:(1)正确;,(2)不正确;,(3)不正确;,(4)正确。,2、求下列各式的值:,解:(1)原式25;(2)原式,2、分数指数幂,初中已学过整数指数幂,知道:,a0=1,(nN*),n 个,(a 0),整数指数幂的运算性质:,(1)、am.an=am+n(a0,m,nZ),(2)、(am)n=amn(a0,n,mZ),(3)、(ab)n=anbn(a0,b0,nZ),下面讨论根式,先看几个实例,(a0),与幂的关系,指数间有关系:,可以认为,定义正数a的分数指数幂意义是:,(m、nN*且n1),0的正分数指数幂等于0;0的负分数指数幂没有意义。,这样,指数的概念就由整数指数幂推广到了分数指数幂,统称有理数指数幂。可以证明,整数指数幂的运算法则对有理指数幂也成立,即有理指数幂有如下的运算法则:,(1)、aras=ar+s(2)、(ar)s=ars(3)、(ab)r=arbr 其中a0,b0 且r,sQ。,例1、a为正数,用分数指数幂表示下列根式:,解:,解:,解:,解:,口答:1、用根式表示下列各式:(a 0)(1)(2)(3)(4)2、用分数指数幂表示下列各式:(1)(2)(3)(4),例2、利用分数指数幂的运算法则计算下列各式:,解:,=100,=16,例3 化简(a0,x0,rQ):,探究:无理数指数幂的意义,思考1:我们知道 1414 21356,那么 的大小如何确定?,一般地,无理数指数幂(a 0,是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.,小结:1、n次根式的定义及有关概念;,2、幂的运算性质可以从整数指数推广到有理数指数,再推广到实数指数的形式;,3、用分数指数表示根式的目的是为将根式运算转化为指数运算;,哈哈,下课了!我的时间我做主!再见!,

    注意事项

    本文(指数及指数幂的运算经典.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开