欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    七章节动态规划.ppt

    • 资源ID:5354585       资源大小:1.05MB        全文页数:70页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    七章节动态规划.ppt

    第七章 动态规划,一、多阶段决策过程的最优化二、基本概念和基本原理三、动态规划模型的建立与求解四、动态规划在经济管理中的应用,动态规划(D.P.Dynamic Program)是解决多阶段决策过程最优化问题的一种方法。广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。可用于解决最优路径问题、资源分配问题、生产计划与库存、投资、装载、排序等问题及生产过程的最优控制等。动态的含义:动态规划方法与“时间”关系很密切,随着时间过程的发展而决定各时段的决策,产生一个决策序列,这就是“动态”的意思。,一、多阶段决策过程的最优化,动态规划的起源:1951年,(美)数学家R.Bellman等人,根据多阶段序贯决策问题的特点,提出了著名的“最优性原理”。将多阶段决策问题转变为一系列的互相联系的单阶段决策问题,然后,逐个阶段予以解决,最后再形成总体解决。从而创建了求解优化问题的新方法动态规划。1957年,他的名著动态规划出版。最优性原理:作为整个过程的最优策略具有这样的性质:即无论过去的状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优子策略。简言之,最优策略的子策略总是最优的。,一、多阶段决策过程的最优化,动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。即决策过程可划分为明显的阶段。动态决策问题分类:1、按数据给出的形式分为:离散型动态决策问题。连续型动态决策问题。2、按决策过程演变的性质分为:确定型动态决策问题。随机型动态决策问题。,一、多阶段决策过程的最优化,例1 生产与存贮问题要求确定一个逐月的生产计划,在满足需求条件下,使一年的生产与存贮费用之和最小?例2 投资决策问题某公司现有资金Q万元,在今后5年内考虑给A,B,C,D 4个项目投资?例3 设备更新问题现企业要决定一台设备未来8年的更新计划,问应在哪些年更新设备可使总费用最小?,一、多阶段决策过程的最优化,例4 基建投资问题 一家公司有三个工厂,每个厂都需要进行扩建。公司用于扩建的资金总共为7万元。各个厂的投资方案及扩建后预期可获得的利润如表所示(单位:万元)。,现在公司要确定时各厂投资多少才能使公司的总利润达到最大?,一、多阶段决策过程的最优化,例5 货船装运问题 有四种货物准备装到一艘货船上。第i(i12,3,4)种货物的每一箱重量是wi(单位:吨),其价值是vi(单位:干元),如表所示。,假定这艘货船的总载重量是10吨,现在要确定这四种货物应各装几箱才能使装载货物的总价值达到最大?,一、多阶段决策过程的最优化,例6 最短路程问题 假定从A地到E地要铺设一条管道,其中要经过若干个中间点(如图)。,图中两点之间连线上的数字表示两地间的距离,现在要选择一条铺设管道的路线使总长度最短。,一、多阶段决策过程的最优化,二、基本概念和基本原理,1、阶段:将所给问题的过程,按时间或空间特征分解成若干互相联系的阶段,以便按次序去求每阶段的解,常用字母k表示阶段变量。,动态规划模型要用到的概念:(1)阶段;(2)状态;(3)决策和策略;(4)状态转移;(5)指标函数。,2、状态:各阶段开始时的客观条件叫做状态。状态变量:描述各阶段状态的变量,用sk表示第k阶段的状态变量。状态集合:状态变量的取值集合,用Sk表示。,一阶段:S1A二阶段:S2B1,B2,B3三阶段:S3C1,C2,C3四阶段:S4D1,D2,二、基本概念和基本原理,3、决策:当各段的状态取定以后,就可以作出不同的决定(或选择),从而确定下一阶段的状态,这种决定称为决策。决策变量:表示决策的变量,称为决策变量,常用uk(sk)表示第k阶段当状态为sk时的决策变量。允许决策集合:决策变量的取值往往限制在一定范围内,我们称此范围为允许决策集合,用Dk(sk)表示第k阶段从状态sk出发的允许决策集合。,D2(B1)=C1,C2 D2(B2)=C1,C2,C3如状态为B1时选择C2,可表示为:u2(B1)=C2,二、基本概念和基本原理,策略:各段决策确定后,整个问题的决策序列就构成一个策略,用p1,nu1(s1),u2(s2),.un(sn)表示。允许策略集合:对每个实际问题,可供选择的策略有一定范围,称为允许策略集合,记作P1,n,使整个问题达到最优效果的策略就是最优策略。,p1,4B1,C1,D1,E,二、基本概念和基本原理,4、状态转移方程:动态规划中本阶段的状态往往是上一阶段状态和上一阶段的决策结果。第k段的状态sk,本阶段决策为uk(sk),则第k+1段的状态sk+1也就完全确定,它们的关系可用公式表示:sk+1=Tk(sk,uk),sk+1=uk(sk),二、基本概念和基本原理,5、指标函数:用于衡量所选定策略优劣的数量指标。它分为阶段指标函数和过程指标函数。阶段指标函数是指第k段,从状态sk出发,采取决策uk时的效益,用d(sk,uk)表示。d(B1,C2)一个n段决策过程,从1到n叫作问题的原过程,对于任意一个给定的k(1k n),从第k段到第n段的过程称为原过程的一个后部子过程。V1,n(s1,p1,n)表示初始状态为s1采用策略p1,n时原过程的指标函数值;Vk,n(sk,pk,n)表示在第k段,状态为sk采用策略pk,n时,后部子过程的指标函数值。最优指标函数记为fk(sk):表示从第k段状态sk采用最优策略到过程终止时的最佳效益值。,二、基本概念和基本原理,最简单的方法穷举法。共有多少条路径,依次计算并比较。动态规划方法本方法是从过程的最后一段开始,用逆序递推方法求解,逐步求出各段各点到终点的最短路线,最后求得起始点到终点的最短路线。,二、基本概念和基本原理,练习:,求从A到E的最短路径。,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f5(E)=0,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D1)=5,f5(E)=0,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f4(D1)=5,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C1)=8,f4(D1)=5,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C2)=7,f4(D1)=5,f3(C1)=8,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f3(C1)=8,f3(C2)=7,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B1)=20,f3(C2)=7,f3(C1)=8,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B2)=14,f3(C2)=7,f3(C1)=8,f2(B1)=21,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f2(B1)=21,f2(B2)=14,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A(A,B2)B2,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A(A,B2)B2(B2,C1)C1,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A(A,B2)B2(B2,C1)C1(C1,D1)D1,二、基本概念和基本原理,2,5,1,12,14,10,6,10,4,13,11,12,3,9,6,5,8,10,5,2,C1,C3,D1,A,B1,B3,B2,D2,E,C2,f4(D2)=2,f5(E)=0,f3(C3)=12,f4(D1)=5,f2(B3)=19,f3(C2)=7,f3(C1)=8,f1(A)=19,f2(B2)=14,f2(B1)=21,状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态,A(A,B2)B2(B2,C1)C1(C1,D1)D1(D1,E)E从A到E的最短路径为19,路线为AB 2C1 D1 E,二、基本概念和基本原理,可以看出,在求解的各阶段,都利用了第k段和第k+1段的如下关系:,这种递推关系称为动态规划的基本方程,第二个式子称为边界条件。这种在图上直接计算的方法称为标号法。,二、基本概念和基本原理,动态规划标号法较之穷举法的优点:第一,容易算出;其次,动态规划的计算结果不仅得到了从起始点到最终点的最短路线,而且得到了中间段任一点到最终点的最短路线。,二、基本概念和基本原理,动态规划方法的基本思想:(1)将多阶段决策过程划分阶段,恰当地选取状态变量、决策变量及定义最优指标函数从而把问题化成一族同类型的子问题,然后逐个求解。(2)求解时从边界条件开始,逆(或顺)过程行进方向,逐段递推寻优。在每一个子问题求解时,都要使用它前面已求出的子问题的最优结果,最后一个子问题的最优解,就是整个问题的最优解。(3)动态规划方法是既把当前一段与未来各段分开,又把当前效益和未来效益结合起来考虑的一种最优化方法,因此每段的最优决策选取是从全局考虑的,与该段的最优选择一般是不同的。,二、基本概念和基本原理,三、动态规划模型的建立与求解,(一)动态规划模型的建立(二)逆序解法与顺序解法(三)基本方程分段求解时的几种常用算法,(一)动态规划模型的建立建立动态规划的模型关键,在于识别问题的多阶段持征,将问题分解成为可用递推关系式联系起来的若干子问题,或者说正确地建立具体问题的基本方程。而正确建立基本递推关系方程的关键又在于正确选择状态变量,保证各阶段的状您变量具有递推的状态转移关系 sk+1=Tk(sk,uk)下面以资源分配问题为例介绍动态规划的建模条件及解法。,三、动态规划模型的建立与求解,例5 某公司有资金10万元若投资于项目i(i1,2,3)的投资额为xi时,其收益分别为g1(x1)4x1,g2(x2)9x2,g3(x3)2x32,问应如何分配投资数额才能使总收益最大?,可以人为地赋予时段,把问题转化为一个3段决策过程。关键问题是如何正确选择状态变量,使各后部子过程之间具有递进关系。,三、动态规划模型的建立与求解,K=1,K=2,第k段时,所以,建立动态规划模型:阶段k:本例中取1,2,3状态变量sk:第k段可以投资于第k项到第3个项目的资金数决策变量xk:决定给第k个项目投资的资金数。状态转移方程:sk+1sk-xk,最优指标函数fk(sk):当可投资金数为sk时,投资第k-3项所得的最大收益数。基本方程为:,三、动态规划模型的建立与求解,建立动态规划模型的要点1、分析题意,识别问题的多阶段特性,按时间或空间的先后顺序适当地划分为满足递推关系的若干阶段。2、正确地选择状态变量,使其具备两个必要待征:(1)可知性;(2)能够确切地描述过程的演变且满足无后效性。3、根据状态变量与决策变量的含义,正确写出状态转移方程sk+1=Tk(sk,uk)或转移规则。4、根据题意明确指标函数vk,n最优指标函数fk(sk)以及k阶段指标vk(sk,uk)的含义,并正确列出最优指标函数的递推关系及边界条件(即基本方程)。,三、动态规划模型的建立与求解,(二)逆序解法与顺序解法如果寻优的方向与多阶段决策过程的实际行进方向相反,从最后一段开始计算逐段前推,求得全过程的最优策略,称为逆序解法。顺序解法的寻优方向同于过程的行进方向,计算时从第一段开始逐段向后递推,计算后一阶段要用到前一阶段的求优结果,最后一段计算的结果就是全过程的最优结果。,三、动态规划模型的建立与求解,第一步:k=0状态:s1A,f0(A)0,求解步骤,三、动态规划模型的建立与求解,第二步:k=1 状态:B1 B2,u1*(B1)=A,u1*(B2)=A,f1(B1)4,f2(B2)5,(4),(5),三、动态规划模型的建立与求解,第三步:k=2 状态:C1 C2 C3 C4,u2*(C1)=B1,u2*(C2)=B1,u2*(C3)=B1,f2(C1)6,f2(C2)7,f2(C3)10,u2*(C4)=B2,f2(C4)12,(6),(7),(10),(12),三、动态规划模型的建立与求解,第四步:k=3 状态:D1 D2 D3,u3*(D1)=C1或C2,u3*(D2)=C2,u3*(D3)=C3,f3(D1)11,f3(D2)12,f3(D3)14,(11),(12),(14),三、动态规划模型的建立与求解,第五步:k=4 状态:E1 E2,u4*(E1)=D1,u4*(E2)=D2,f4(E1)14,f4(E2)14,(14),(14),三、动态规划模型的建立与求解,第六步:k=5 状态:F,u5*(F)=E2,f5(F)17,(17),即从A到F的最短距离为17。最优路线为:AB1C2D2E2F,三、动态规划模型的建立与求解,逆序解法与顺序解法建模的不同点,1状态转移方式不同sk+1=Tk(sk,uk)sk=Tk(sk+1,uk),三、动态规划模型的建立与求解,2指标函数的定义不同 逆序解法中,我们定义最优指标函数fk(sk)表示第k段从状态sk出发,到终点后部子过程最优效益值,f1(s1)是整体最优函数值。顺序解法中,定义最优指标函数fk(sk+1)表示第k段时从起点到状态sk+1的前部子过程最优效益值。fn(sn+1)是整体最优函数值。,三、动态规划模型的建立与求解,3,基本方程形式不同(1)当指标函数为阶段指标和形式逆序解法,则基本方程为:,则基本方程为:,顺序解法,三、动态规划模型的建立与求解,(2)当指标函数为阶段指标积形式逆序解法,基本方程为:,基本方程为:,顺序解法,三、动态规划模型的建立与求解,1离散变量的分段穷举算法 动态规划模型中的状态变量与决策变量若被限定只能取离散值,则可采用分段穷举法。如前面例4的求解方法就是分段穷举算法,由于每段的状态变量和决策变量离散取值个数较少,所以动态规划的穷举法要比一般的穷举法有效。用分段穷举法求最优指标函数值时,最重要的是正确确定每段状态变量取值范围和允许决策集合的范围。,(三)基本方程分段求解时的几种常用算法,三、动态规划模型的建立与求解,2连续变量的解法 当动态规划模型中状态变量与决策变量为连续变量,就要根据方程的具体情况灵活选取求解方法,如经典解析方法、线性规划方法、非线性规划法或其它数值计算方法等。如在例5中,状态变量与决策变量均可取连续值而不是离散值,所以每阶段求优时不能用穷举方法处理。下面分别用逆序解法求解。,三、动态规划模型的建立与求解,例5:某公司有资金10万元若投资于项目i(i1,2,3)的投资额为xi时,其收益分别为g1(x1)4x1,g2(x2)9x2,g3(x3)2x32,问应如何分配投资数额才能使总收益最大?,三、动态规划模型的建立与求解,其动态规划模型已建立如下:阶段k:本例中取1,2,3状态变量sk:第k段可以投资于第k项到第3个项目的资金数决策变量xk:决定给第k个项目投资的资金数。状态转移方程:sk+1sk-xk,最优指标函数fk(sk):当可投资金数为sk时,投资第k-3项所得的最大收益数。基本方程为:,三、动态规划模型的建立与求解,k3时,三、动态规划模型的建立与求解,k2时,三、动态规划模型的建立与求解,k1时,三、动态规划模型的建立与求解,k1时,最优投资方案为全部资金投于第3个项目,可得最大收益200万元。,三、动态规划模型的建立与求解,四、在经济管理中的应用,(一)背包问题,背包问题的一般提法是:一位旅行者携带背包去登山、已知他所能承受的背包重量限度为a千克,现有n种物品可供他选择装入背包。第i种物品的单件重量为ai干克、其价值(可以是表明本物品对登山的重要性的数量指标)是携带数量xi的函数ci(xi)(i1,2,n),问旅行者应如何选择携带各种物品的件数,以使总价值最大?其他如车、船、飞机、潜艇、人造卫星等工具的最优装载问题,机床加工中零件最优加工、下料问题、投资决策问题,均等同于背包问题。,背包问题的动态规划模型,1阶段k:将可装入物品按1,2,.,n排序,共划分为n个阶段,即k1,2,.,n。2状态变量sk+1:在第k段开始时,背包中允许装入前k种物品的总重量。3决策变量xk:装入第k种物品的件数。4状态转移方程:sk=sk+1-akxk5允许决策集合为:Dk(sk+1)xk|oxk sk+1/ak,xk为整数6最优指标函数 fk(sk+1)表示在背包中允许装入物品的总重量不超过sk+1千克,采用最优策略只装前k种物品时的最大使用价值。7顺序递推方程:,四、在经济管理中的应用,例:有一辆最大货运量为10吨的卡车,用以装载3种货物每种货物的单位重量及相应单位价值如表所示。应如何装载可使总价值最大?,设第i种货物装载的件数为xi(i1,2,3),则问题可表为,四、在经济管理中的应用,K=1,建立动态规划模型,用列表法求解,四、在经济管理中的应用,K=2,四、在经济管理中的应用,K=3,所以x3*=0,s3=s4-5x3=10-5*0=10,所以x2*=1,s2=s3-4x2=10-4*1=6,所以x1*=2,全部策略为:x1*=2 x2*=1 x3*=0,最大价值为13。,四、在经济管理中的应用,(二)生产经营问题生产与存贮问题,在生产和经营管理中经常遇到如何合理地安排生产计划、采购计划以及仓库的存货计划和销售计划,使总效益最高的问题。,四、在经济管理中的应用,例:某工厂生产并销售某种产品,已知今后四个月市场需求预测如表,又每月生产单位产品费用为:,每月库存j单位产品的费用为E(j)0.5j(干元),该厂最大库存容量为3单位,每月最大生产能力为6单位,计划开始和计划期末库存量都是零。试制定四个月的生产计划,在满足用户需求条件下总费用最小。假设第j+1个月的库存量是第j个月可销售量与该月用户需求量之差;而第i个月的可销售量是本月初库存量与产量之和。,四、在经济管理中的应用,(1)阶段:每个月为一个阶段,k1,2,3,4。(2)状态变量:sk为第k个月初的库存量。(3)决策变量:uk为第k个月的生产量。(4)状态转移方程:sk+1=sk+uk-gk(5)最优指标函数:fk(sk)表示第k月状态为sk时,采用最佳策略生产,从本月到计划结束(第4个月末)的生产与存贮最低费用。(6)基本方程:,解:建立动态规划模型,四、在经济管理中的应用,K=4 u4=4-s4,四、在经济管理中的应用,K=3 s3=0,1,2,3,四、在经济管理中的应用,K=2 s2=0,1,2,3,四、在经济管理中的应用,K=1 s1=0,可得最佳生产计划为:第一个月生产2单位,第二个月生产5单位,第三个月不生产,第四个月生产4单位。,四、在经济管理中的应用,

    注意事项

    本文(七章节动态规划.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开