3[1].1.2概率的意义.ppt
3.1.2概率的意义,复习回顾,你能回忆一下随机事件发生的概率的定义吗?,事件A的概率:,对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。,1、概率的正确理解,问题1:有人说,既然抛掷一枚硬币出现正面 的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗?,问题2:有人说,中奖率为 的彩票,买1000张一定中奖,这种理解对吗?,问题4:你能举出生活中一些与概率有关的例子吗?,问题3:随机事件发生的频率与概率的区别与联系是什么?,概率与频率的关系:,(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。(2)频率本身是随机的,在试验前不能确定。(3)概率是一个确定的数,是客观存在的,与每次试验无关。,二、概率在实际问题中的应用,1、游戏的公平性,2、决策中的概率思想,3、天气预报的概率解释,4、遗传机理中的统计规律,1、游戏的公平性,(1)你有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得对比赛双方公平吗?,(2)你能否举出一些游戏不公平的例子,并说明理由。,这样的游戏公平吗?,小军和小民玩掷色子是游戏,他们约定:两颗色子掷出去,如果朝上的两个数的和是5,那么小军获胜,如果朝上的两个数的和是7,那么小民获胜。这样的游戏公平吗?,事件:掷双色子,A:朝上两个数的和是5,B:朝上两个数的和是7,关键是比较A发生的可能性和B发生的可能性的大小。,这样的游戏公平吗?,2、决策中的概率思想,思考:如果连续10次掷一枚色子,结果都是出现1点,你认为这枚色子的质地均匀吗?为什么?,如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。,在一次试验中几乎不可能发生的事件称为小概率事件,3、天气预报的概率解释,思考:某地气象局预报说,明天本地降水概率为70%。你认为下面两个解释中哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地下雨的机会是70%。,试验与发现豌豆杂交试验,孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆是黄色的。第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的又有绿色的。同样他把圆形和皱皮豌豆杂交,第一年收获的都是圆形豌豆,连一粒。皱皮豌豆都没有。第二年,当他把这种杂交圆形再种下时,得到的却既有圆形豌豆,又有皱皮豌豆。,豌豆杂交试验的子二代结果,孟德尔小传,从维也纳大学回到布鲁恩不久,孟德尔就开始了长达8年的豌豆实验。孟德尔首先从许多种子商那里,弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆料或皱科、灰色种皮或白色种皮等。,遗传机理中的统计规律,第二代,第一代,亲 本,YY 表示纯黄色的豌豆 yy 表示纯绿色的豌豆,黄色豌豆(YY,Yy):绿色豌豆(yy)3:1,(其中Y为显性因子 y为隐性因子),1、解释下列概率的含义。(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2。,练习:,2、设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球,今随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,问这球从哪一个箱子中取出?,思考:你对概率与频率的区别与联系有哪些认识?你认为应当怎样理解概率的意义?,概率是事件的本质属性不随试验次数变化,频率是它的近似值,同频率一样,它也反映了事件发生可能性的大小,但它只提供了一种“可能性”,并不是精确值。,概率的意义告诉我们:概率是事件固有的性质,它不同于频率随试验次数的变化而变化,它反映了事件发生可能性的大小,但概率假如为10%,并不是说100次试验中肯定会发生10次,只是说可能会发生10次,但也不排除发生的次数大于10或者小于10。,小结作业,1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.,2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.,3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.,