欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    平面向量复习公开课.ppt

    • 资源ID:5347469       资源大小:453KB        全文页数:24页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面向量复习公开课.ppt

    第二章 平面向量复习课,一.基本概念,1.向量及向量的模、向量的表示方法,1)图形表示,2)字母表示,3)坐标表示,A,B,有向线段AB,一.基本概念,2.零向量及其特殊性,3.单位向量,一.基本概念,4.平行向量,5.相等向量,6.相反向量,方向相同或相反的非零向量叫做平行向量,长度相等且方向相同的向量叫做相等向量.,在保持长度和方向不变的前提下,向量可以平行移动.平移先后两向量相等任一组平行向量都可平移到同一直线上,(共线向量),区分向量平行、共线与几何平行、共线,长度相等且方向相反的向量叫做相反向量.,1.向量加法的三角形法则,2.向量加法的平行四边形法则,3.向量减法的三角形法则,首尾相连首尾连,首同尾连向被减,共起点,二.基本运算(向量途径),4.实数与向量的积,是一个向量,二.基本运算(向量途径),5.两个非零向量 的数量积,向量数量积的几何意义,可正可负可为零,二.基本运算(向量途径),向量夹角:首要的是通过向量平移,使两个向量共起点。,ea=ae=|a|cosab ab=0a,b同向ab=|a|b|反向时ab=-|a|b|a2=aa=|a|2(aa=)cos=|ab|a|b|,平面向量的数量积ab的性质:,二.基本运算(坐标途径),三.两个等价条件,四.一个基本定理,平面向量基本定理,利用向量分解的“唯一性”来构建实系数方程组,向量的有关概念,五.应用举例,例2 化简(1)(AB+MB)+BO+OM(2)AB+DA+BD BCCA,利用加法减法运算法则,借助结论,AB=AP+PB;AB=OBOA;AB+BC+CA=0,进行变形.,解:,原式=,AB+(BO+OM+MB),=AB+0,=AB,(1),(2),原式=,AB+BD+DA(BC+CA),=0BA=AB,五.应用举例,向量加减法则,五.应用举例,例3.如图平行四边形OADB的对角线OD、AB相交于点C,线段BC上有一点M满足BC=3BM,线段CD上有一点N满足CD=3CN,平面向量基本定理,例4、如图,在平行四边形ABCD中,已知,求:(1);(2);,解:,所以,所以,(1),(2),五.应用举例,平面向量的数量积,20,五.应用举例,向量共线定理,例7.已知a=(1,-1),求a共线的单位向量。,例6.已知平行四边形ABCD的三顶点 A(1,3),B(3,1),C(5,2),求第四个顶点D和中心M的坐标,D(1,2),例8.已知向量a=(1,5),b=(3,2),求a在b方向上的正射影的数量。,例9已知,且 与 夹角为120求;与 的夹角。,五.应用举例,向量的长度与夹角问题,(1)k=19,(2),反向,五.应用举例,平行与垂直问题,例10,练习:1、若a=(1,2),b=(-2,),且a与b的夹角为钝角,则的取值范围是,3.在四边形ABCD中,=(1,1),求四边形ABCD的面积。,特别注意:,由此,当需要判断或证明两向量夹角为锐角或钝角时,应排除夹角为0或 的情况,也就是要进一步说明两向量不共线。,(A)重心 外心 垂心(B)重心 外心 内心(C)外心 重心 垂心(D)外心 重心 内心,思考:,向量垂直的判定,向量平行的判定(共线向量的判定),向量的长度,向量的夹角,考点提示,

    注意事项

    本文(平面向量复习公开课.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开