南大复变函数与积分变换课件(PPT版)44洛朗级数.ppt
4.4 洛朗级数,一、含有负幂次项的“幂级数”,1.问题分析,引例,展开式为,事实上,该函数在整个复平面上仅有 一个奇点,,但正是这样一个奇点,使得函数只能在 内展开,为 z 的幂级数,,而在 如此广大的解析区域内不能,展开为 z 的幂级数。,有没有其它办法呢?,一粒老鼠屎,坏了一锅汤!,一、含有负幂次项的“幂级数”,1.问题分析,设想,这样一来,在整个复平面上就有,从而可得,一、含有负幂次项的“幂级数”,1.问题分析,启示,如果不限制一定要展开为只含正幂次项的幂级数的话,,即如果引入负幂次项,那么就有可能将一个函数在整个,复平面上展开(除了奇点所在的圆周上)。,在引入了负幂次项以后,“幂级数”的收敛特性如何呢?,下面将讨论下列形式的级数:,一、含有负幂次项的“幂级数”,分析,2.级数 的收敛特性,(A),(B),(1)对于(A)式,其收敛域的形式为,(2)对于(B)式,其收敛域的形式为,根据上一节的讨论可知:,一、含有负幂次项的“幂级数”,结论,2.级数 的收敛特性,(1)如果级数 收敛,,则其收敛域“一定”为环域:,如果只含正幂次项(或者加上有限个负幂次项),,特别地,如果只含负幂次项(或者加上有限个正幂次项),,则其收敛域为:,上述两类收敛域被看作是一种特殊的环域。,一、含有负幂次项的“幂级数”,结论,2.级数 的收敛特性,(1)如果级数 收敛,,则其收敛域“一定”为环域:,而且具有与幂级数同样的运算性质和分析性质。,(2)级数 在收敛域内其和函数是解析的,因此,下面将讨论如何将一个函数在其解析环域内展开,为上述形式的级数。,二、洛朗(Laurent)定理,C 为在圆环域内绕 的任何一条简单闭曲线。,解析,内,在此圆环域中展开为,则 一定能,其中,,二、洛朗(Laurent)定理,注,(2)洛朗级数中的正幂次项和负幂次项分别称为洛朗级数,二、洛朗(Laurent)定理,的解析部分和主要部分。,(3)一个在某圆环域内解析的函数展开为含有正负幂次项,的级数是唯一的。,(5)若函数 在圆环 内解析,则 在,在此圆环内的洛朗展开式就是泰勒展开式。,三、将函数展开为洛朗级数的方法,1.直接展开法,根据洛朗定理,在指定的解析环上,直接计算展开系数:,有点繁!有点烦!,三、将函数展开为洛朗级数的方法,根据唯一性,利用一些已知的展开式,通过有理运算、,代换运算、逐项求导、逐项求积等方法展开。,两个重要的已知展开式,2.间接展开法,三、将函数展开为洛朗级数的方法,都需要根据函数的奇点位置,将复平面(或者题目指定,的展开区域)分为若干个解析环。,展开点为,则复平面,被分为四个解析环:,函数 有两个奇点:,以展开点 为中心,,将复平面分为三个解析环:,(2)将函数进行部分分式分解,解,1,2,当 时,,(3)将函数在每个解析环内分别展开,解,1,2,当 时,,(3)将函数在每个解析环内分别展开,解,1,2,当 时,,(3)将函数在每个解析环内分别展开,有两个奇点:,以展开点 为中心,,将复平面分为两个解析环:,注意:不需要将函数进行部分分式分解。,函数,解,当 时,,(2)将函数在每个解析环内分别展开,解,当 时,,i,-i,(2)将函数在每个解析环内分别展开,函数 有两个奇点:,以展开点 为中心,,注意:不需要将函数进行部分分式分解。,将复平面分为两个解析环:,解,当 时,,(2)将函数在每个解析环内分别展开,解,当 时,,(2)将函数在每个解析环内分别展开,解,解,附:洛朗定理的证明,由二连域的柯西积分公式有,如图,在圆环内作两个圆:,证明,对 内任一点 z,,其中,,记为,附:洛朗定理的证明,证明,对第一个积分,和泰勒展开式一样,可以推得,附:洛朗定理的证明,证明,附:洛朗定理的证明,证明,因此有,附:洛朗定理的证明,证明,附:洛朗定理的证明,证明,级数(4.4.5)的系数由不同的式子(4.4.6)与(4.4.7)表出.,如果在圆环域内取绕 z0 的任何一条正向简单闭曲线 C,则根据闭路变形原理,这两个式子可用一个式子来表示:,附:洛朗定理的证明,证明,即,