欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    洛朗级数展开习题精讲.ppt

    • 资源ID:5335323       资源大小:578.01KB        全文页数:24页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    洛朗级数展开习题精讲.ppt

    3.5 洛朗(Laurent)级数展开,已知:当f(z)在圆|z-z0|R内解析时,Taylor定理告诉我们,f(z)可展开成幂级数。问题的提出为了研究函数在奇点附近的性质,需要函数在孤立奇点z0邻域上的展开式。考虑:当f(z)在圆|z-z0|R内有奇点时,能否展开成幂级数或展开成类似于幂级数的形式。,教学目的与要求:了解双边幂级数,了解洛朗级数与泰勒级数的关系,掌握解析函数在孤立奇点邻域内的洛朗展式的求法.重点:解析函数的洛朗展式;解析函数在孤立奇点邻域内的洛朗展式的求法.难点:解析函数的洛朗展式的证明.,一、双边幂级数(含有正、负幂项),其中正幂部分称为 解析(正则)部分,负幂部分称为 主要(无限)部分。,收敛区域(环)的确定:正则部分 收敛(圆)区域为:负幂部分 令 则设 即负幂部分在|z-z0|=R2的圆外收敛。,由此,我们可以用它的正幂项级数和负幂项级数的敛散性来定义原级数的敛散性。规定:当且仅当正幂项级数和负幂项级数都收敛时,原级数收敛,并且把原级数看成是正幂项级数与负幂项级数的和。讨论:(1)若R1R2,则双边幂级数就在R2|z-z0|R1环状区域内收敛,环状收敛域称为收敛环。双边幂级数在收敛环内绝对且一致收敛,在环外发散,在环上敛散性不定。,正则部分 主要部分,收敛环R2|z-z0|R1,双边幂级数的性质定理1:双边幂级数 在收敛环上的和函数是一解析函数,并且在任意较小的闭圆环上 一致收敛。,定理2:设双边幂级数 的收敛环B为R2|z-z0|R1,则f(z)(1)在B内连续;(2)在B内解析,且逐项可导;(3)在B内可逐项积分。,定理3:设函数f(z)在环状区域R2|z-z0|R1的内 部单值解析,则对于环内任一点z,f(z)必可展开成,其中,称为洛朗系数,C为环域内按逆时针方向绕内圆一周的任一闭合曲线(也可取圆周),几点说明:(1)z=z0(即展开中心)可能不是f(z)的奇点,但 在|z-z0|R2上,存在奇点(即内圆以内存在 奇点);(2)洛朗系数,因为 成立的条件是f(z)在C内解析;(3)洛朗展开的唯一性;,(4)如果只有环心z0是f(z)的奇点,则内圆半径可以任意小,同时z可以无限地接近z0点,这时就称 为f(z)在它的孤立奇点z0的邻域内的洛朗展开式。若f(z)在z0不解析(不可微或无意义),而在去心邻域0|z-z0|内解析,则称z=z0是f(z)的孤立奇点。若在z0无论多么小的邻域内,总有除z0外的奇点,则称z0为f(z)的非孤立奇点。泰勒级数在其收敛圆内具有的许多性质在收敛圆环域R2|z-z0|R1内的洛朗级数也具有。在收敛圆环域内的洛朗级数可以逐项求导、逐项积分、和函数是解析函数。,求洛朗展开式的系数Cn洛朗展开式的系数Cn用公式计算是很麻烦的,由洛朗级数的唯一性,我们可用别的方法,特别是代数运算、代换、求导和积分等方法展开,这样往往更便利(即间接展开法)。同一个函数在不同的收敛圆环域内的洛朗级数一般不同;由洛朗级数的唯一性可知,同一个函数在相同的收敛圆环域内的洛朗级数一定相同。,例1 求函数 在圆环 的洛朗级数。,解,注意,用到已有的展开:,作业题的错误集中在后半边的展开,特别是,原因应该是没有熟练掌握已有的展开,例2 将函数在指定去心领域内展成洛朗级数 并指出收敛范围,我们知道 在原点邻域上的展开式为,把z全换成1/z,可得到以下结果:,用1-z去换上式中的z得到:,即,则,用到的已知的展开:,注意,我们知道 在原点邻域上的展开式为,所以,注:以上每项分别是,等的展开,继续计算展开相乘得结果,应当指出,根据定理公式直接求一个函数的洛朗级数是很困难的,必须计算无穷多个积分才能得到,而不能像泰勒级数通过求导得,到,但是根据洛朗级数的唯一性,可以利用已知函数如,等的泰勒展开式和幂级数,的运算,特别是代数运算,变量代换,求导和积分等方法求一些,初等函数在指定圆环内的洛朗级数,直接利用公式只是个别情况!,附录:常见函数泰勒展开,谢谢观看 再见,

    注意事项

    本文(洛朗级数展开习题精讲.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开